Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
PANG Yihui, GUAN Shufang, JIANG Zhigang, et al. Current status and prospects of surrounding rock control and intelligent coal drawing technology in fully mechanized caving face[J]. Journal of Mine Automation,2024,50(9):20-27.  doi: 10.13272/j.issn.1671-251x.18211
Citation: PANG Yihui, GUAN Shufang, JIANG Zhigang, et al. Current status and prospects of surrounding rock control and intelligent coal drawing technology in fully mechanized caving face[J]. Journal of Mine Automation,2024,50(9):20-27.  doi: 10.13272/j.issn.1671-251x.18211

Current status and prospects of surrounding rock control and intelligent coal drawing technology in fully mechanized caving face

doi: 10.13272/j.issn.1671-251x.18211
  • Received Date: 2024-07-29
  • Rev Recd Date: 2024-09-12
  • Available Online: 2024-10-17
  • This paper analyzes the current status and existing issues in the control technology of surrounding rock and intelligent top coal caving technology for thick and ultra-thick coal seams in fully mechanized caving faces. The study focuses on five aspects: efficient support of roadway surrounding rock, advanced support of working faces, the caving behavior of hard ultra-thick top coal, hydraulic support position monitoring, and intelligent top coal caving. To tackle the technical challenges and engineering demands for safe, efficient, and intelligent caving mining, research was conducted on surrounding rock control technology and intelligent coal caving technology. A mechanical model for cantilever beams of hard ultra-thick top coal was developed, and key technologies to enhance caving characteristics and extraction rate of top coal were created, facilitating large-height caving mining of hard ultra-thick coal seams. A modular advanced hydraulic support with a rotating self-resetting device was developed, allowing the hydraulic support's beam to automatically rotate based on the inclination angle of the roadway roof, significantly improving its adaptability to the roof and floor of roadway. The idea of replacing traditional bolt-mesh support with hydraulic supports for roadway support was proposed, offering high support efficiency, low cost, and savings on advanced support. A monitoring device and algorithm for the support posture of fully mechanized caving hydraulic supports based on the stroke of the jacks of columns and tail beams were developed, enhancing calculation efficiency and accuracy. An intelligent coal drawing control method integrating transparent geological models, coal volume monitoring devices, and coal and gangue identification devices was proposed, effectively addressing the challenges of intelligent coal drawing from ultra-thick top coal with multi-gangue layers. The paper concludes that trends in intelligent fully mechanized caving mining technology and equipment include intelligent geological assurance technology, precise measurement and intelligent sensing via machine vision, adaptive control technology for fully mechanized caving mining equipment, and digital twin technology.

     

  • loading
  • [1]
    孙宝东,滕霄云,张帆,等. 2024年中国能源供需形势研判[J]. 中国煤炭,2024,50(4):20-26.

    SUN Baodong,TENG Xiaoyun,ZHANG Fan,et al. Research on China’s energy supply and demand situation in 2024[J]. China Coal,2024,50(4):20-26.
    [2]
    陈延安,龚大勇. 2024年煤炭价格走势预测及区域特点[J]. 煤炭经济研究,2024,44(3):55-59.

    CHEN Yan'an,GONG Dayong. Prediction of coal price trends and regional characteristics in 2024[J]. Coal Economic Research,2024,44(3):55-59.
    [3]
    钱鸣高,许家林,王家臣,等. 矿山压力与岩层控制[M]. 3版. 徐州:中国矿业大学出版社,2021.

    QIAN Minggao,XU Jialin,WANG Jiachen,et al. Mine pressure and strata control[M]. 3rd ed. Xuzhou:China University of Mining & Technology Press,2021.
    [4]
    樊运策,毛德兵. 缓倾斜特厚煤层综放开采合理开采厚度的确定[J]. 煤矿开采,2009(2):3-4,38. doi: 10.3969/j.issn.1006-6225.2009.02.002

    FAN Yunce,MAO Debing. Reasonable mining height of full-mechanized caving mining in softly inclined and extra-thick coal seam[J]. Coal Mining Technology,2009(2):3-4,38. doi: 10.3969/j.issn.1006-6225.2009.02.002
    [5]
    王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261-279.

    WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261-279.
    [6]
    杨秀宇,刘帅,刘清,等. 智能化综放工作面顶煤厚度探测方法[J]. 工矿自动化,2021,47(6):79-83,123.

    YANG Xiuyu,LIU Shuai,LIU Qing,et al. Top coal thickness detection method for intelligent fully-mechanized working face[J]. Industry and Mine Automation,2021,47(6):79-83,123.
    [7]
    张守祥,张学亮,刘帅,等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报,2020,45(6):2008-2020.

    ZHANG Shouxiang,ZHANG Xueliang,LIU Shuai,et al. Intelligent precise control technology of fully mechanized top coal caving face[J]. Journal of China Coal Society,2020,45(6):2008-2020.
    [8]
    李庆元,杨艺,李化敏,等. 基于Q−learning模型的智能化放顶煤控制策略[J]. 工矿自动化,2020,46(1):72-79.

    LI Qingyuan,YANG Yi,LI Huamin,et al. Intelligent control strategy for top coal caving based on Q-learning model[J]. Industry and Mine Automation,2020,46(1):72-79.
    [9]
    张彩峰. 塔山煤矿综采放顶煤工作面智能化开采技术的探讨及应用[J]. 煤矿机电,2018,39(2):68-73.

    ZHANG Caifeng. Study and application of intelligent mining technology for fully mechanized caving top coal working face in Tashan Coal Mine[J]. Colliery Mechanical & Electrical Technology,2018,39(2):68-73.
    [10]
    李富强,李昕. 放顶煤工艺中声学场景识别研究[J]. 中国煤炭,2023,49(2):82-88. doi: 10.3969/j.issn.1006-530X.2023.02.010

    LI Fuqiang,LI Xin. Research on acoustic scene recognition in top-coal caving process[J]. China Coal,2023,49(2):82-88. doi: 10.3969/j.issn.1006-530X.2023.02.010
    [11]
    李伟,孙希奎. 深地煤炭资源安全高效智能化开采关键技术与实践[J]. 煤炭科学技术,2024,52(1):52-64. doi: 10.12438/cst.2023-1794

    LI Wei,SUN Xikui. Key technologies and practices for safe,efficient,and intelligent mining of deep coal resources[J]. Coal Science and Technology,2024,52(1):52-64. doi: 10.12438/cst.2023-1794
    [12]
    邬喜仓,张学亮,阮进林,等. 保德煤矿智能综放工作面建设关键技术研究[J]. 工矿自动化,2023,49(2):141-148.

    WU Xicang,ZHANG Xueliang,RUAN Jinlin,et al. Research on key technology of intelligent fully mechanized caving face construction in Baode Coal Mine[J]. Journal of Mine Automation,2023,49(2):141-148.
    [13]
    康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7-39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7-39.
    [14]
    王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
    [15]
    闫少宏,尹希文,许红杰,等. 大采高综采顶板短悬臂梁−铰接岩梁结构与支架工作阻力的确定[J]. 煤炭学报,2011,36(11):1816-1820.

    YAN Shaohong,YIN Xiwen,XU Hongjie,et al. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height[J]. Journal of China Coal Society,2011,36(11):1816-1820.
    [16]
    侯忠杰. 对浅埋煤层“短砌体梁” 、“台阶岩梁” 结构与砌体梁理论的商榷[J]. 煤炭学报,2008,33(11):1201-1204. doi: 10.3321/j.issn:0253-9993.2008.11.001

    HOU Zhongjie. Concept of both short voussoir beam and step beam in shallow seam and voussoir beam theory[J]. Journal of China Coal Society,2008,33(11):1201-1204. doi: 10.3321/j.issn:0253-9993.2008.11.001
    [17]
    尹希文. 浅埋超大采高工作面覆岩“切落体” 结构模型及应用[J]. 煤炭学报,2019,44(7):1961-1970.

    YIN Xiwen. Cutting block structure model of overburden with shallow buried coal seam and ultra-large mining height working face[J]. Journal of China Coal Society,2019,44(7):1961-1970.
    [18]
    谢德瑜. 急倾斜三软煤层综放采场覆岩移动与顶煤放出规律研究[D]. 北京:中国矿业大学(北京),2016.

    XIE Deyu. Study on overlying strata movement and top coal caving law in fully mechanized top coal caving face in steep three-soft coal seam[D]. Beijing:China University of Mining & Technology-Beijing,2016.
    [19]
    王家臣,张锦旺,陈祎. 基于BBR体系的提高综放开采顶煤采出率工艺研究[J]. 矿业科学学报,2016,1(1):38-48.

    WANG Jiachen,ZHANG Jinwang,CHEN Yi. Research on technology of improving top-coal recovery in longwall top-coal caving mining based on BBR system[J]. Journal of Mining Science and Technology,2016,1(1):38-48.
    [20]
    白庆升,屠世浩,王沉. 顶煤成拱机理的数值模拟研究[J]. 采矿与安全工程学报,2014,31(2):208-213.

    BAI Qingsheng,TU Shihao,WANG Chen. Numerical simulation on top-coal arching mechanism[J]. Journal of Mining & Safety Engineering,2014,31(2):208-213.
    [21]
    黄炳香,刘长友,程庆迎. 低位综放开采顶煤放出率与含矸率的关系[J]. 煤炭学报,2007,32(8):789-793. doi: 10.3321/j.issn:0253-9993.2007.08.002

    HUANG Bingxiang,LIU Changyou,CHENG Qingying. Relation between top-coal drawing ratio and refuse content for fully mechanized top coal carving[J]. Journal of China Coal Society,2007,32(8):789-793. doi: 10.3321/j.issn:0253-9993.2007.08.002
    [22]
    庞义辉,王国法. 坚硬特厚煤层顶煤冒放结构及提高采出率技术[J]. 煤炭学报,2017,42(4):817-824.

    PANG Yihui,WANG Guofa. Top-coal caving structure and technology for increasing recovery rate at extra-thick hard coal seam[J]. Journal of China Coal Society,2017,42(4):817-824.
    [23]
    王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.

    WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
    [24]
    庞义辉. 液压支架支护状态感知与数据处理技术[J]. 工矿自动化,2021,47(11):66-73.

    PANG Yihui. Support state perception and data processing technology of hydraulic support[J]. Industry and Mine Automation,2021,47(11):66-73.
    [25]
    万丽荣,陈博,杨扬,等. 单颗粒煤岩冲击放顶煤液压支架尾梁动态响应分析[J]. 煤炭学报,2019,44(9):2905-2913.

    WAN Lirong,CHEN Bo,YANG Yang,et al. Dynamic response of single coal-rock impacting tail beam of top coal caving hydraulic support[J]. Journal of China Coal Society,2019,44(9):2905-2913.
    [26]
    宋庆军,肖兴明,张天顺,等. 基于声波的放顶煤过程自动控制系统[J]. 计算机工程与设计,2015,36(11):3123-3127.

    SONG Qingjun,XIAO Xingming,ZHANG Tianshun,et al. Automatic control systems in top-coal caving based on acoustic wave[J]. Computer Engineering and Design,2015,36(11):3123-3127.
    [27]
    王昕. 基于电磁波技术的煤岩识别方法研究[D]. 徐州:中国矿业大学,2017.

    WANG Xin. Research on coal and rock identification method based on electromagnetic wave technology[D]. Xuzhou:China University of Mining and Technology,2017.
    [28]
    庞义辉,刘新华,王泓博,等. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法[J]. 采矿与安全工程学报,2023,40(6):1231-1242.

    PANG Yihui,LIU Xinhua,WANG Hongbo,et al. Support attitude and height analysis method of hydraulic support based on jack stroke drive[J]. Journal of Mining & Safety Engineering,2023,40(6):1231-1242.
    [29]
    许永祥,王国法,张传昌,等. 特厚坚硬煤层超大采高综放开采合理采高研究与实践[J]. 采矿与安全工程学报,2020,37(4):715-722.

    XU Yongxiang,WANG Guofa,ZHANG Chuanchang,et al. Investigation and practice of the reasonable cutting height at longwall top coal caving face with super-large mining height in hard and extra-thick coal seams[J]. Journal of Mining & Safety Engineering,2020,37(4):715-722.
    [30]
    王家臣,杨胜利,刘淑琴,等. 急倾斜煤层开采技术现状与流态化开采构想[J]. 煤炭科学技术,2022,50(1):48-59. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201003

    WANG Jiachen,YANG Shengli,LIU Shuqin,et al. Technology status and fluidized mining conception for steeply inclined coal seams[J]. Coal Science and Technology,2022,50(1):48-59. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201003
    [31]
    张锦旺,何庚,王家臣. 不同混合度下液体介入难辨别煤矸红外图像识别准确率[J]. 煤炭学报,2022,47(3):1370-1381.

    ZHANG Jinwang,HE Geng,WANG Jiachen. Coal/gangue recognition accuracy based on infrared image with liquid intervention under different mixing degree[J]. Journal of China Coal Society,2022,47(3):1370-1381.
    [32]
    王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101.

    WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (42) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return