[1] |
贺兴,艾芊,朱天怡,等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术,2020,44(6):2009-2019.HE Xing,AI Qian,ZHU Tianyi,et al. Opportunities and challenges of the digital twin in power system applications[J]. Power System Technology,2020,44(6):2009-2019.
|
[2] |
庞宇. 行星齿轮箱数字孪生体动力学仿真与故障诊断研究[D]. 太原: 中北大学, 2020.PANG Yu. Simulation study on dynamics and fault diagnosis of digital twin in planetary gearbox[D]. Taiyuan: North University of China, 2020.
|
[3] |
纪志伟. 基于数字孪生的泛在电力物联网模型研究[J]. 电力学报,2020,35(3):274-279.JI Zhiwei. Research on ubiquitous power Internet of things model based on digital twinning[J]. Journal of Electric Power,2020,35(3):274-279.
|
[4] |
王浩,许海伟,杜勇,等. 基于数字孪生模型的GIS筒体关键部件温变行为研究[J]. 高电压技术,2021,47(5):1584-1594.WANG Hao,XU Haiwei,DU Yong,et al. Research on temperature change behavior of key components of GIS barrel based on digital twin model[J]. High Voltage Engineering,2021,47(5):1584-1594.
|
[5] |
张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017
|
[6] |
夏玲,姜媛媛,张杰,等. 基于数字孪生的Buck电路故障诊断方法[J]. 工矿自动化,2021,47(2):88-92,115. doi: 10.13272/j.issn.1671-251x.2020070063XIA Ling,JIANG Yuanyuan,ZHANG Jie,et al. Buck circuit fault diagnosis method based on digital twin[J]. Industry and Mine Automation,2021,47(2):88-92,115. doi: 10.13272/j.issn.1671-251x.2020070063
|
[7] |
程晓涵,李宗吾,谢秉沁,等. 基于MEMS技术的矿用无线传感采集系统设计[J]. 煤炭工程,2022,54(3):26-32.CHENG Xiaohan,LI Zongwu,XIE Bingqin,et al. MEMS technology-based mine wireless sensor acquisition system[J]. Coal Engineering,2022,54(3):26-32.
|
[8] |
王怀秀,仇帅,朱国维,等. 基于MEMS与LwIP的煤矿三分量地震数据采集系统[J]. 煤田地质与勘探,2021,49(4):8-14. doi: 10.3969/j.issn.1001-1986.2021.04.002WANG Huaixiu,QIU Shuai,ZHU Guowei,et al. Three-component seismic data acquisition system of coal mine based on MEMS and LwIP[J]. Coal Geology & Exploration,2021,49(4):8-14. doi: 10.3969/j.issn.1001-1986.2021.04.002
|
[9] |
范海东. 基于数字孪生的智能电厂体系架构及系统部署研究[J]. 智能科学与技术学报,2019,1(3):241-248. doi: 10.11959/j.issn.2096-6652.201930FAN Haidong. Research on architecture and system deployment of intelligent power plant based on digital twin[J]. Chinese Journal of Intelligent Science and Technology,2019,1(3):241-248. doi: 10.11959/j.issn.2096-6652.201930
|
[10] |
邹东,冯剑冰. 数字孪生技术在城市轨道交通供电系统中的应用场景分析[J]. 城市轨道交通研究,2021,24(3):158-162,165. doi: 10.16037/j.1007-869x.2021.03.036ZOU Dong,FENG Jianbing. Application scenario analysis of digital twin technology in urban rail transit power supply system[J]. Urban Mass Transit,2021,24(3):158-162,165. doi: 10.16037/j.1007-869x.2021.03.036
|
[11] |
JAIN P,POON J,SINGH J P,et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE Transactions on Power Electronics,2020,35(1):940-956. doi: 10.1109/TPEL.2019.2911594
|
[12] |
韩将星. 6G时代数字孪生在无线电监测站的应用研究[J]. 通信技术,2021,54(2):352-362.HAN Jiangxing. Digital twin application in radio monitoring stations in 6G era[J]. Communications Technology,2021,54(2):352-362.
|
[13] |
苗可彬. 基于LoRa技术的矿用无线一氧化碳传感器设计[J]. 电子设计工程,2021,29(14):95-100. doi: 10.14022/j.issn1674-6236.2021.14.021MIAO Kebin. Design of wireless carbon monoxide sensor for mine based on LoRa technology[J]. Electronic Design Engineering,2021,29(14):95-100. doi: 10.14022/j.issn1674-6236.2021.14.021
|
[14] |
潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计[J]. 工矿自动化,2021,47(6):103-108. doi: 10.13272/j.issn.1671-251x.2021030052PAN Xiaobo. Design of low-power distributed gas concentration monitoring system based on LoRa[J]. Industry and MineAutomation,2021,47(6):103-108. doi: 10.13272/j.issn.1671-251x.2021030052
|
[15] |
孙学波,李志福,王元杰,等. 基于5G通信网络的高精度无线微震监测技术研究[J]. 矿业安全与环保,2022,49(2):83-90. doi: 10.19835/j.issn.1008-4495.2022.02.015SUN Xuebo,LI Zhifu,WANG Yuanjie,et al. Research on high-precision wireless microseismic monitoring technology based on 5G communication network[J]. Mining Safety & Environmental Protection,2022,49(2):83-90. doi: 10.19835/j.issn.1008-4495.2022.02.015
|
[16] |
吕晟,唐小平,汤雪鹏,等. 基于多数据融合的智能电网运检信息平台设计[J]. 电子设计工程,2021,29(10):120-124. doi: 10.14022/j.issn1674-6236.2021.10.026LYU Sheng,TANG Xiaoping,TANG Xuepeng,et al. Design of intelligent power grid operation and inspection information platform based on multi-data fusion[J]. Electronic Design Engineering,2021,29(10):120-124. doi: 10.14022/j.issn1674-6236.2021.10.026
|
[17] |
胡伟飞,方健豪,刘飞香,等. 基于数字孪生的掘锚一体机实时状态映射[J]. 湖南大学学报(自然科学版),2022,49(2):1-12. doi: 10.55463/issn.1674-2974.49.2.1HU Weifei,FANG Jianhao,LIU Feixiang,et al. Real-time state mirror-mapping for driving and bolting integration equipment based on digital twin[J]. Journal of Hunan University(Natural Sciences),2022,49(2):1-12. doi: 10.55463/issn.1674-2974.49.2.1
|
[18] |
郑忠斌,王朝栋,蔡佳浩. NB-IoT的技术优势及在电网中的应用研究[J]. 通信技术,2020,53(7):1786-1793. doi: 10.3969/j.issn.1002-0802.2020.07.035ZHENG Zhongbin,WANG Chaodong,CAI Jiahao. Technical advantage of NB-IoT and its application in power grid[J]. Communications Technology,2020,53(7):1786-1793. doi: 10.3969/j.issn.1002-0802.2020.07.035
|
[19] |
殷鹏, 肖开泰, 肖长亮, 等. 煤矿安全监控系统数据采集方式[J]. 煤矿安全, 2019, 50(8): 104-106.YIN Peng, XIAO Kaitai, XIAO Changliang, et al. Data acquisition method of coal mine safety monitoring system[J]Safety in Coal Mines, 2019, 50(8): 104-106.
|
[20] |
周海坤. 高并发煤矿安全监控数据采集系统的设计[J]. 煤矿安全,2018,49(6):85-87,91. doi: 10.13347/j.cnki.mkaq.2018.06.022ZHOU Haikun. Design of data acquisition system for high concurrent coal mine safety monitoring[J]. Safety in Coal Mines,2018,49(6):85-87,91. doi: 10.13347/j.cnki.mkaq.2018.06.022
|
[21] |
李军,赵军. MEMS传感器的发展及其在煤矿井下的应用研究[J]. 煤炭技术,2014,33(7):238-240. doi: 10.13301/j.cnki.ct.2014.07.089LI Jun,ZHAO Jun. Development and application of MEMS sensor under coal mine[J]. Coal Technology,2014,33(7):238-240. doi: 10.13301/j.cnki.ct.2014.07.089
|
[22] |
赵悦,兰英,屈贤. 基于 MEMS传感器的煤矿井下人员定位系统设计[J]. 工矿自动化,2018,44(8):87-91.ZHAO Yue,LAN Ying,QU Xian. Design of personnel positioning system in coal mine underground based on MEMS sensor[J]. Industry and Mine Automation,2018,44(8):87-91.
|
[23] |
张新. LoRa技术及其在煤矿中的应用分析[J]. 煤炭工程,2019,51(3):79-82.ZHANG Xin. LoRa technology and its application analysis in coal mine[J]. Coal Engineering,2019,51(3):79-82.
|
[24] |
薛光辉,赵贺,孙宗正. 基于LoRa技术的矿用无线复合传感器设计与实现[J]. 煤炭工程,2020,52(4):166-170.XUE Guanghui,ZHAO He,SUN Zongzheng. Design and implementation of mine wireless composite sensor based on LoRa[J]. Coal Engineering,2020,52(4):166-170.
|
[25] |
LARSSON E G,EDFORS O,TUFVESSON F,et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine,2014,52(2):186-195. doi: 10.1109/MCOM.2014.6736761
|
[26] |
GAO Hongyuan,SU Yumeng,ZHANG Shibo,et al. Joint antenna selection and power allocation for secure co-time co-frequency full-duplex massive MIMO systems[J]. IEEE Transactions on Vehicular Technology,2021,70(1):655-665.
|
[27] |
GAO Xinyu,DAI Linglong,CHEN Zhijie,et al. Near-optimal beam selection for beamspace mmWave massive MIMO systems[J]. IEEE Communications Letters,2016,20(5):1054-1057.
|
[28] |
ZHOU Tao,CHEN Guichao,WANG Chengxiang,et al. Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection[J]. Frontiers of Information Technology & Electronic Engineering,2021,22(4):571-585.
|
[29] |
王国法,赵国瑞,胡亚辉. 5G 技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
|
[30] |
顾义东,孟玮. 煤矿5G无线通信系统建设构想[J]. 工矿自动化,2021,47(10):1-6,13. doi: 10.13272/j.issn.1671-251x.17850GU Yidong,MENG Wei. Coal mine 5G wireless communication system construction concept[J]. Industry and Mine Automation,2021,47(10):1-6,13. doi: 10.13272/j.issn.1671-251x.17850
|
[31] |
刘扬,刘建功,王毅颖,等. 煤矿坚强智能电网建设理论与技术探讨[J]. 煤炭学报,2020,45(6):2296-2307. doi: 10.13225/j.cnki.jccs.ZN20.0334LIU Yang,LIU Jiangong,WANG Yiying,et al. Discussion on theory and technology of building robust intelligent power grid in coal mine of China[J]. Journal of China Coal Society,2020,45(6):2296-2307. doi: 10.13225/j.cnki.jccs.ZN20.0334
|
[32] |
赵涵. 基于区块链的智能矿山数据共享方案研究[J]. 工矿自动化,2021,47(增刊2):45-48.ZHAO Han. Research on smart mine data sharing scheme based on blockchain[J]. Industry and Mine Automation,2021,47(S2):45-48.
|
[33] |
秦晓伟,王立兵,汪磊,等. 区块链技术在矿山物联网中的应用研究[J]. 工矿自动化,2020,46(3):21-26. doi: 10.13272/j.issn.1671-251x.17542QIN Xiaowei,WANG Libing,WANG Lei,et al. Research on application of blockchain technology in mine Internet of things[J]. Industry and Mine Automation,2020,46(3):21-26. doi: 10.13272/j.issn.1671-251x.17542
|
[34] |
谭靓洁,李永飞,吴琼. 基于区块链的煤矿安监云数据安全访问模型研究[J]. 工矿自动化,2022,48(5):93-99. doi: 10.13272/j.issn.1671-251x.2022030023TAN Liangjie,LI Yongfei,WU Qiong. Research on security access model of coal mine safety supervision cloud data based on blockchain[J]. Journal of Mine Automation,2022,48(5):93-99. doi: 10.13272/j.issn.1671-251x.2022030023
|
[35] |
朱珂,张莹,李瑞丽. 全息课堂:基于数字孪生的可视化三维学习空间新探[J]. 远程教育杂志,2020,38(4):38-47. doi: 10.15881/j.cnki.cn33-1304/g4.2020.04.004ZHU Ke,ZHANG Ying,LI Ruili. Holographic classroom:A new exploration of visualized 3D learning space based on digital twin[J]. Journal of Distance Education,2020,38(4):38-47. doi: 10.15881/j.cnki.cn33-1304/g4.2020.04.004
|
[36] |
李梅,孙振明,吕平洋,等. 煤矿综采工作面多角色虚拟演练平台关键技术研究[J]. 煤炭科学技术,2018,46(1):156-161,223. doi: 10.13199/j.cnki.cst.2018.01.022LI Mei,SUN Zhenming,LYU Pingyang,et al. Study on key technology of multiplayer virtual reality training platform for fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):156-161,223. doi: 10.13199/j.cnki.cst.2018.01.022
|
[37] |
李新虎. 基于大数据挖掘的矿井旋转机械状态评估系统[J]. 电子器件,2021,44(2):434-438. doi: 10.3969/j.issn.1005-9490.2021.02.032LI Xinhu. State evaluation system of mine rotating machinery based on big data mining[J]. Chinese Journal of Electron Devices,2021,44(2):434-438. doi: 10.3969/j.issn.1005-9490.2021.02.032
|
[38] |
何俊峰,肖慧明. 矿井提升机健康管理系统研究[J]. 制造业自动化,2020,42(6):4-7,38. doi: 10.3969/j.issn.1009-0134.2020.06.002HE Junfeng,XIAO Huiming. Reserch on system of health management for mine hoist[J]. Manufacturing Automation,2020,42(6):4-7,38. doi: 10.3969/j.issn.1009-0134.2020.06.002
|
[39] |
齐波,张鹏,张书琦,等. 数字孪生技术在输变电设备状态评估中的应用现状与发展展望[J]. 高电压技术,2021,47(5):1522-1538. doi: 10.13336/j.1003-6520.hve.20210093QI Bo,ZHANG Peng,ZHANG Shuqi,et al. Application status and development prospects of digital twin technology in condition assessment of power transmission and transformation equipment[J]. High Voltage Engineering,2021,47(5):1522-1538. doi: 10.13336/j.1003-6520.hve.20210093
|
[40] |
王玉梅, 张家康. 基于卷积神经网络多判据融合的井下电网故障选线方法[J/OL]. 电源学报: 1-12[2022-06-15]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1712.010.html.WANG Yumei, ZHANG Jiakang. Fault line selection method for mine power grid based on fusion of multiple criteria of convolutional neural network[J/OL]. Journal of Power Supply: 1-12[2022-06-15]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1712.010.html.
|
[41] |
倪少军,李双良,匡欣欣,等. 面向煤矿供电的智能分布式防越级保护系统[J]. 工矿自动化,2021,47(增刊1):78-80,87.NI Shaojun,LI Shuangliang,KUANG Xinxin,et al. Intelligent distributed anti-override protection system for coal mine power supply[J]. Industry and Mine Automation,2021,47(S1):78-80,87.
|
[42] |
张文瑞. 煤矿供电防越级跳闸监控系统[J]. 工矿自动化,2018,44(9):98-101. doi: 10.13272/j.issn.1671-251x.17343ZHANG Wenrui. Anti-override trip monitoring system of coal mine power supply[J]. Industry and Mine Automation,2018,44(9):98-101. doi: 10.13272/j.issn.1671-251x.17343
|
[43] |
刘波. 煤矿智能化供电系统的防越级跳闸与远程漏试应用[J]. 工矿自动化,2021,47(增刊1):85-87.LIU Bo. Application of anti override trip and remote leakage test in coal mine intelligent power supply system[J]. Industry and Mine Automation,2021,47(S1):85-87.
|
[44] |
汪丛笑. 煤矿安全监控系统智能化现状及发展对策[J]. 工矿自动化,2017,43(11):5-10. doi: 10.13272/j.issn.1671-251x.2017.11.002WANG Congxiao. Present situation and development countermeasures of coal mine safety monitoring and control system intelligentization[J]. Industry and Mine Automation,2017,43(11):5-10. doi: 10.13272/j.issn.1671-251x.2017.11.002
|
[45] |
闫兆振. 煤矿安全监控多系统融合平台[J]. 工矿自动化,2017,43(2):11-14. doi: 10.13272/j.issn.1671-251x.2017.02.003YAN Zhaozhen. Multi-system fusion platform for coal mine safety monitoring and control[J]. Industry and Mine Automation,2017,43(2):11-14. doi: 10.13272/j.issn.1671-251x.2017.02.003
|
[46] |
张朝晖,成鑫,牛猛,等. 无人机在煤矿电力系统的应用与研究[J]. 科技资讯,2021,19(11):84-86. doi: 10.16661/j.cnki.1672-3791.2012-5042-0863ZHANG Zhaohui,CHENG Xin,NIU Meng,et al. Application and research of UAV in coal mine power system[J]. Science & Technology Information,2021,19(11):84-86. doi: 10.16661/j.cnki.1672-3791.2012-5042-0863
|
[47] |
侯刚. 煤矿无人机智能系统设计与实现[J]. 煤炭工程,2021,53(2):19-23.HOU Gang. Design and realization of intelligent system of coal mine UAV[J]. Coal Engineering,2021,53(2):19-23.
|
[48] |
王妙云. 煤矿井下四旋翼无人机虚拟远程操控关键技术研究[D]. 西安: 西安科技大学, 2020.WANG Miaoyun. Key technologies of virtual remote control of quadcopter UAV in underground coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2020.
|
[49] |
袁智勇,肖泽坤,于力,等. 智能电网大数据研究综述[J]. 广东电力,2021,34(1):1-12. doi: 10.3969/j.issn.1007-290X.2021.001.001YUAN Zhiyong,XIAO Zekun,YU Li,et al. Research review of big data for smart grid[J]. Guangdong Electric Power,2021,34(1):1-12. doi: 10.3969/j.issn.1007-290X.2021.001.001
|