留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电流谐波特征的矿用电缆劣化监测与故障诊断

卢润戈 徐涛 周卓蓓 李茂 黄潮灿

卢润戈,徐涛,周卓蓓,等. 基于电流谐波特征的矿用电缆劣化监测与故障诊断[J]. 工矿自动化,2023,49(10):35-42.  doi: 10.13272/j.issn.1671-251x.18144
引用本文: 卢润戈,徐涛,周卓蓓,等. 基于电流谐波特征的矿用电缆劣化监测与故障诊断[J]. 工矿自动化,2023,49(10):35-42.  doi: 10.13272/j.issn.1671-251x.18144
LU Runge, XU Tao, ZHOU Zhuobei, et al. Degradation monitoring and fault diagnosis of mining cables based on current harmonic features[J]. Journal of Mine Automation,2023,49(10):35-42.  doi: 10.13272/j.issn.1671-251x.18144
Citation: LU Runge, XU Tao, ZHOU Zhuobei, et al. Degradation monitoring and fault diagnosis of mining cables based on current harmonic features[J]. Journal of Mine Automation,2023,49(10):35-42.  doi: 10.13272/j.issn.1671-251x.18144

基于电流谐波特征的矿用电缆劣化监测与故障诊断

doi: 10.13272/j.issn.1671-251x.18144
基金项目: 中国南方电网有限责任公司科技项目(GZHKJXM20200011)。
详细信息
    作者简介:

    卢润戈(1991—),男,广东广州人,工程师,硕士,研究方向为电力系统优化运行与控制等,E-mail:lurunge@foxmail.com

  • 中图分类号: TD61

Degradation monitoring and fault diagnosis of mining cables based on current harmonic features

  • 摘要: 矿用电缆受煤矿恶劣环境影响,容易发生绝缘劣化、护套受损等情况,传统的矿用电缆检测多采用低压脉冲法、局放法等离线诊断方式,操作复杂,准确度低,难以满足现代煤矿生产需求。而现有基于谐波的电缆故障诊断方法存在检测装置笨重、检测精确低、难以在煤矿应用等问题。针对上述问题,提出一种基于电流谐波特征的矿用电缆劣化监测与故障诊断方法。提取电缆中高次谐波含量信息作为故障特征向量,对特征向量进行归一化处理后导入极限梯度提升树(XGBoost)模型,结合已知电缆故障劣化度数据,形成训练样本集,训练XGBoost模型,最后通过构建的XGBoost模型对电缆劣化度进行实时监测和故障诊断。仿真结果表明:针对电缆不同部位提取的高次谐波向量的相对能量有明显不同,表明提取的高次谐波向量可表征电缆不同部位的运行状态;XGBoost模型的拟合优度参数R2高达 0.93,且误差较小。案例分析结果验证了基于电流谐波特征的矿用电缆劣化监测与故障诊断方法可对矿用电缆运行状态及劣化故障进行实时、准确的监测和诊断。

     

  • 图  1  电力电缆中的磁场与电流

    Figure  1.  Magnetic field and current in cable

    图  2  XGBoost模型构建流程

    Figure  2.  XGBoost model construction process

    图  3  谐波信号采集电路结构

    Figure  3.  Structure of harmonic signal acquisition circuit

    图  4  电缆故障诊断流程

    Figure  4.  Cable fault diagnosis process

    图  5  电缆谐波向量能量谱

    Figure  5.  Energy spectrum of cable harmonic vector

    图  6  绝缘体劣化度预测结果

    Figure  6.  Prediction results of insulation degradation degree

    图  7  屏蔽层劣化度预测结果

    Figure  7.  Prediction results of shielding layer degradation

    图  8  保护层劣化度预测结果

    Figure  8.  Prediction results of degradation degree of protective layer

    图  9  电缆接头劣化度预测结果

    Figure  9.  Prediction results of cable joint deterioration

    图  10  电缆主体部运行状态实时数据

    Figure  10.  Real time data of the status of main body of the cable

    图  11  诊断报告

    Figure  11.  Diagnose report

    图  12  故障电缆

    Figure  12.  Faulty cable

    表  1  矿用电缆劣化状态与高次谐波的关系

    Table  1.   Relationship between mining power cable degradation state and higher harmonics

    电力电
    缆部位
    劣化类型第一主成分
    谐波次数(贡献率)
    其他主成分
    谐波次数(贡献率)
    累计故障
    贡献率/%
    主体部绝缘体劣化初期劣化型3(41%),5(41%)4(6%),2(6%)94
    机械性损伤2(55%)4(16%),3(9%),5(6%)86
    电气性损伤5(59%)3(20%),4(8%),2(6%)93
    自然劣化型5(52%)3(28%),4(7%),2(6%)93
    屏蔽层劣化3(25%)5(24%),2(23%),4(18%)90
    保护层劣化2(39%)4(29%),3(10%),5(7%)85
    连接部发热7(53%)10(15%),9(11%),8(7%),6(5%)91
    污损8(35%)7(29%),9(13%),10(11%),6(7%)95
    龟裂9(33%)8(25%),7(21%),10(8%),6(5%)92
    变形10(30%)7(23%),8(17%),9(15%),6(6%)91
    下载: 导出CSV

    表  2  部分主体部样本数据

    Table  2.   Part of the main body sample data

    序号H2H3H4H5劣化度
    绝缘体屏蔽层保护层
    11.82.31.54.936.861.252.2
    22.42.11.45.337.854.147.7
    33.81.71.80.976.831.646.2
    43.42.11.42.463.049.949.9
    52.02.11.64.939.358.556.4
    62.91.31.22.375.043.867.6
    73.04.41.24.278.484.171.2
    83.06.01.02.178.295.754.0
    92.81.01.52.519.716.026.1
    102.81.51.00.569.041.448.7
    113.05.30.91.984.094.055.7
    123.01.41.75.949.742.970.2
    132.81.41.21.657.839.547.9
    142.41.11.11.944.638.146.8
    152.95.70.91.578.195.450.6
    下载: 导出CSV

    表  3  部分连接部样本数据

    Table  3.   Part of the connection part sample data

    序号H7H8H9H10电缆接头
    劣化度
    11.20.40.40.482.6
    21.50.60.50.581.3
    31.20.40.50.778.8
    40.60.50.40.347.7
    50.70.50.40.446.2
    60.50.40.30.249.9
    70.70.40.30.256.4
    80.50.50.50.567.6
    90.80.40.40.471.2
    100.60.50.40.454.0
    110.50.40.40.246.1
    120.60.40.40.246.7
    130.60.40.40.355.7
    140.80.60.50.370.2
    150.70.40.40.347.9
    下载: 导出CSV

    表  4  电缆主体部和连接部预测精度评估参数

    Table  4.   Prediction accuracy evaluation parameters for cable main body and connection parts

    电缆R2${\rm{MSE}}$${\rm{MRSE}}$${\rm{MAPE}}$
    绝缘层0.93540.0018240.04220.0670
    屏蔽层0.92950.0007980.02820.0468
    保护层0.93850.0017360.04120.0607
    电缆接头0.95100.0009590.03100.0286
    下载: 导出CSV

    表  5  部分高次谐波含有率

    Table  5.   Part of the high-order harmonic content

    序号H2H3H4H5H7H8H9H10时间
    11.51.11.20.90.50.40.40.32021−05−18
    21.41.31.41.10.50.40.30.42021−05−18
    31.61.11.50.90.70.60.40.32021−05−18
    41.51.21.41.30.60.30.30.22021−05−18
    53.81.51.51.20.80.50.20.12021−05−19
    62.41.41.41.30.60.50.40.32021−05−19
    73.81.81.81.20.70.40.30.22021−05−19
    83.42.11.41.00.90.50.50.32021−05−19
    93.32.11.61.10.60.30.40.22021−05−19
    下载: 导出CSV
  • [1] 雷志鹏,李蔚,何庆辉,等. 基于介电响应法的矿用电缆绝缘性能评估方法研究[J]. 工矿自动化,2023,49(1):46-55. doi: 10.13272/j.issn.1671-251x.18047

    LEI Zhipeng,LI Wei,HE Qinghui,et al. Study on evaluation method of insulation performance of mine cable based on dielectric response method[J]. Journal of Mine Automation,2023,49(1):46-55. doi: 10.13272/j.issn.1671-251x.18047
    [2] 林晨,吝伶艳,雷志鹏,等. 基于PDC的多应力老化乙丙橡胶电缆绝缘状态评估[J]. 绝缘材料,2020,53(1):70-75. doi: 10.16790/j.cnki.1009-9239.im.2020.01.013

    LIN Chen,LIN Lingyan,LEI Zhipeng,et al. State evaluation of multi-stress aged EPR cable insulation based on PDC[J]. Insulating Materials,2020,53(1):70-75. doi: 10.16790/j.cnki.1009-9239.im.2020.01.013
    [3] 李刚. 探讨电力电缆故障相关的原因与检测[J]. 中国设备工程,2022(9):169-171. doi: 10.3969/j.issn.1671-0711.2022.09.060

    LI Gang. Discussion on the causes and detection related to mining cable failure[J]. China Plant Engineering,2022(9):169-171. doi: 10.3969/j.issn.1671-0711.2022.09.060
    [4] 袁燕岭,李世松,董杰,等. 电力电缆诊断检测技术综述[J]. 电测与仪表,2016,53(11):1-7. doi: 10.3969/j.issn.1001-1390.2016.11.001

    YUAN Yanling,LI Shisong,DONG Jie,et al. A review on diagnostic testing technique of electrical power cables[J]. Electrical Measurement & Instrumentation,2016,53(11):1-7. doi: 10.3969/j.issn.1001-1390.2016.11.001
    [5] 袁易君,曹伟莹. 煤矿电缆故障检测仪的设计[J]. 煤矿机械,2009,30(10):131-133. doi: 10.3969/j.issn.1003-0794.2009.10.062

    YUAN Yijun,CAO Weiying. Design of coal mine cable failure instrumentation[J]. Coal Mine Machinery,2009,30(10):131-133. doi: 10.3969/j.issn.1003-0794.2009.10.062
    [6] 张登奎. 基于局部放电的矿用XLPE电缆绝缘在线监测与定位技术研究[D]. 焦作:河南理工大学,2021.

    ZHANG Dengkui. Research on on-line monitoring and positioning technology of mining XLPE cable insulation based on particle discharge[D]. Jiaozuo:Henan Polytechnic University,2021.
    [7] 陆电. 矿井低压电缆绝缘参数在线检测的研究[D]. 西安:西安科技大学,2009.

    LU Dian. Research on the on-line monitoring of insulation parameter of mine low voltage cables[D]. Xi'an:Xi'an University of Science and Technology,2009.
    [8] 狄常馨,付周兴. 矿井低压电缆绝缘参数在线监测的研究[J]. 机电工程技术,2013,42(8):75-77,121. doi: 10.3969/j.issn.1009-9492.2013.08.019

    DI Changxin,FU Zhouxing. Research on on-line monitoring cable's insulation parameters of coal mine[J]. Mechanical & Electrical Engineering Technology,2013,42(8):75-77,121. doi: 10.3969/j.issn.1009-9492.2013.08.019
    [9] 许丹. 新型井下照明微机综合保护装置研究[D]. 焦作:河南理工大学,2005.

    XU Dan. Research on new integrated protection device of underground lighting microcomputer[D]. Jiaozuo:Henan Polytechnic University,2005.
    [10] 陈琛,胡业林,赵世纯. 基于HDS的交联聚乙烯电缆健康诊断研究[J]. 佳木斯大学学报(自然科学版),2018,36(5):773-776. doi: 10.3969/j.issn.1008-1402.2018.05.030

    CHEN Chen,HU Yelin,ZHAO Shichun. Study on health diagnosis of crosslinked polyethylene cable based on HDS[J]. Journal of Jiamusi University(Natural Science Edition),2018,36(5):773-776. doi: 10.3969/j.issn.1008-1402.2018.05.030
    [11] 赵世纯,凌标灿,朱希安,等. HDS电气设备带电状态诊断技术及应用[M]. 北京:电子工业出版社,2017:110-128.

    ZHAO Shichun,LING Biaocan,ZHU Xi'an,et al. Diagnosis technology and application of live state of HDS electrical equipment[M]. Beijing:Publishing House of Electronics Industry,2017:110-128.
    [12] HIROSHL K,GAO Bo. Method for diagnosing working condition and anomalous degradation of electric equipment:JP2004305694[P]. 2004-10-20.
    [13] TSUJIMOTO T,NAKADE M,YAGI Y,et al. Development of on-site diagnostic method for XLPE cable by harmonics in AC loss current[C]. The 7th International Conference on Properties and Applications of Dielectric Materials,Nagoya,2003:73-76.
    [14] 兰鹏,李忠华,周永勤. 交流电压对橡塑绝缘电缆现场绝缘测试分析[J]. 应用科技,2002(10):1-3. doi: 10.3969/j.issn.1009-671X.2002.10.001

    LAN Peng,LI Zhonghua,ZHOU Yongqin. Onsite AC testing and analysis of plastic insulated cables[J]. Applied Science and Technology,2002(10):1-3. doi: 10.3969/j.issn.1009-671X.2002.10.001
    [15] 魏强. 基于谐波分量法XLPE电缆水树老化测试系统的研究[D]. 哈尔滨:哈尔滨理工大学,2004.

    WEI Qiang. Study on measuring system of water tree in XLPE cables based on measurement of harmonic distortion in loss current[D]. Harbin:Harbin University of Science and Technology,2004.
    [16] 任萍. 损耗因数及损耗电流谐波分量自动测试装置的研制[D]. 哈尔滨:哈尔滨理工大学,2014.

    REN Ping. The development of automatic test equipment for loss factor and harmonic component in loss current[D]. Harbin:Harbin University of Science and Technology,2014.
    [17] HIROSHL K,GAO Bo. Method for diagnosing abnormality in electric equipment:P2000-386603[P]. 2000-12-20.
    [18] ABD-EL-MALEK M,ABDELSALAM A K,HASSAN O E. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform[J]. Mechanical Systems and Signal Processing,2017,93:332-350. doi: 10.1016/j.ymssp.2017.02.014
    [19] 吴飞,王鹏程,杨康. 基于PCA−SSA−XGBoost的车辆驾驶性评估[J/OL]. 吉林大学学报(工学版):1-11[2023-06-17]. DOI: 10.13229/j.cnki.jdxbgxb.20230215.

    WU Fei,WANG Pengcheng,YANG Kang. Drivability evaluation model based on PCA-SSA-XGBoost[J/OL]. Journal of Jilin University(Engineering and Technology Edition):1-11[2023-06-17]. DOI: 10.13229/j.cnki.jdxbgxb.20230215.
    [20] 张天瑞,赵伟博,周福强,等. 一种基于改进极端梯度提升决策树的轴承故障诊断方法[J/OL]. 重庆师范大学学报(自然科学版):1-12[2023-06-17]. http://kns.cnki.net/kcms/detail/50.1165.n.20230621.1723.002.html.

    ZHANG Tianrui,ZHAO Weibo,ZHOU Fuqiang,et al. A bearing fault diagnosis method based on improved XGBoost[J]. Journal of Chongqing Normal University(Natural Science):1-12[2023-06-17]. http://kns.cnki.net/kcms/detail/50.1165.n.20230621.1723.002.html.
    [21] 郭培,陈波,高云超,等. 基于XGBOOST−PSO提高受端电网电压暂态稳定的发电机无功优化方法[J]. 电力系统保护与控制,2023,51(13):148-158. doi: 10.19783/j.cnki.pspc.221743

    GUO Pei,CHEN Bo,GAO Yunchao,et al. A generator reactive power optimization method based on XGBOOST-PSO to improve the voltage transient stability of a receiving terminal network[J]. Power System Protection and Control,2023,51(13):148-158. doi: 10.19783/j.cnki.pspc.221743
    [22] 耿家豪,廖宇,马先超,等. 基于XGBoost的风力发电机故障诊断[J]. 通信与信息技术,2022(6):42-46.

    GENG Jiahao,LIAO Yu,MA Xianchao,et al. Fault diagnosis of wind turbine based on XGBoost[J]. Communication & Information Technology,2022(6):42-46.
    [23] 李琼林,李陈莹,庞博,等. 谐波对电力电缆损耗的影响分析与计算方法[J]. 电测与仪表,2015,52(23):34-42. doi: 10.3969/j.issn.1001-1390.2015.23.007

    LI Qionglin,LI Chenying,PANG Bo,et al. Impact analysis and calculation method of harmonic on power cable loss[J]. Electrical Measurement & Instrumentation,2015,52(23):34-42. doi: 10.3969/j.issn.1001-1390.2015.23.007
    [24] 苗旺,陈平,任志刚,等. 电流谐波法在电力电缆状态检测诊断的应用进展[J]. 电力系统及其自动化学报,2021,33(3):73-80. doi: 10.19635/j.cnki.csu-epsa.000427

    MIAO Wang,CHEN Ping,REN Zhigang,et al. Research process in applications of current harmonic analysis to condition monitoring and diagnosis of power cable[J]. Proceedings of the CSU-EPSA,2021,33(3):73-80. doi: 10.19635/j.cnki.csu-epsa.000427
    [25] 曹培,徐鹏,高凯,等. 基于边缘计算的电缆接头运行状态智能传感与监测[J]. 高压电器,2020,56(9):26-32. doi: 10.13296/j.1001-1609.hva.2020.09.004

    CAO Pei,XU Peng,GAO Kai,et al. Intelligent sensing and monitoring of cable joints' state based on edge computing[J]. High Voltage Apparatus,2020,56(9):26-32. doi: 10.13296/j.1001-1609.hva.2020.09.004
    [26] 张伟霞. 10 kV电力电缆状态评估方法的研究[D]. 保定:华北电力大学,2013.

    ZHANG Weixia. Study on state assessment method of 10 kV power cable[D]. Baoding:North China Electric Power University,2013.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  56
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-10-24

目录

    /

    返回文章
    返回