留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新一代智能煤矿人工智能赋能技术研究综述

付翔 秦一凡 李浩杰 牛鹏昊

付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131, 139.  doi: 10.13272/j.issn.1671-251x.18113
引用本文: 付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131, 139.  doi: 10.13272/j.issn.1671-251x.18113
FU Xiang, QIN Yifan, LI Haojie, et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131, 139.  doi: 10.13272/j.issn.1671-251x.18113
Citation: FU Xiang, QIN Yifan, LI Haojie, et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131, 139.  doi: 10.13272/j.issn.1671-251x.18113

新一代智能煤矿人工智能赋能技术研究综述

doi: 10.13272/j.issn.1671-251x.18113
基金项目: 国家自然科学基金项目(52274157);“科技兴蒙”行动重点专项项目(2022EEDSKJXM010);国家重点研发计划项目(2020YFB1314004)。
详细信息
    作者简介:

    付翔(1986—),男,山西长治人,副教授,博士,研究方向为煤矿自动化与控制工程、智能采掘理论与技术、智慧煤矿工业互联网技术,E-mail:14632235@qq.com

    通讯作者:

    秦一凡(1999—),男,山西太原人,硕士研究生,研究方向为智慧煤矿工业互联网技术,E-mail: 838501076@qq.com

  • 中图分类号: TD67

Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine

  • 摘要: 煤炭工业与人工智能(AI)深度融合是现代化矿井实现智能少人、降本提效的重要路径,而煤炭行业全流程、全业务应用场景的AI赋能是实现煤矿智能化的具体技术措施。在当前煤矿智能化发展背景下,提出了初级智能煤矿向新一代智能煤矿演进的基本范式,对比分析了初级智能煤矿与新一代智能煤矿的组成、功能与技术内涵,揭示了新一代智能煤矿AI赋能技术的重要性及其应用实施的2个关键:煤矿工业机理AI模型与煤矿工业互联网平台。总结了关于煤矿地质、采煤、掘进、安全监控等复杂作业环节的工业机理AI模型研究现状,阐明了工业机理AI分析在智能煤矿建设中的快速发展态势。设计了新一代智能煤矿多级云边协同工业互联网平台架构,利用集团数据中心、矿井数据中心、生产系统集控中心等工业信息软硬件设施,结合海量数据云计算和少量数据边缘计算特点,提出了集团云、矿井云与环节边、场景边的多级云边协同机制。指出了未来进一步研究方向,应不断加强煤矿工业机理AI模型的开发与软件化研究,逐步形成煤矿全流程AI赋能的知识软件体系,并充分运用煤矿工业互联网平台的数字资源与信息设施,逐步实现煤矿工业互联网平台的AI技术承载。

     

  • 图  1  初级智能煤矿向新一代智能煤矿演进及内涵

    Figure  1.  The evolution and connotation of primary intelligent coal mine to new generation intelligent coal mine

    图  2  新一代智能煤矿多级云边协同工业互联网架构

    Figure  2.  Multi-level cloud-edge collaborative industrial Internet architecture of new generation intelligent coal mine

  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2022.

    China National Coal Association. 2022 coal industry development annual report[R]. Beijing:China National Coal Association,2022.
    [2] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53. doi: 10.13225/j.cnki.jccs.2022.1536

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53. doi: 10.13225/j.cnki.jccs.2022.1536
    [3] 国务院. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2023-05-04]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

    State Council. Notice of The State Council on the issuance of a new generation of artificial intelligence development plan[EB/OL]. [2023-05-04]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
    [4] 前瞻产业研究院. 2023—2028年中国人工智能行业发展前景预测与投资战略规划分析报告[R]. 北京:前瞻产业研究院,2023.

    Prospective Industry Research Institute. Report of development prospective and development strategy planning analysis on China artificial intelligence industry(2023-2028)[R]. Beijing:Prospective Industry Research Institute,2023.
    [5] 国家能源局. 国家能源局关于加快推进能源数字化智能化发展的若干意见(国能发科技〔2023〕27号)[EB/OL]. [2023-05-04]. http://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122.htm.

    National Energy Administration. Several opinions of the National Energy Administration on accelerating the development of digital and intelligent energy(National Energy Development Technology〔2023〕No. 27)[EB/OL]. [2023-05-04]. http://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122.htm.
    [6] 中国煤炭工业协会. 基于工业互联网的煤炭企业信息化基础设施建设白皮书(2022版)[EB/OL]. [2023-05-04]. https://max.book118.com/html/2022/0625/8125134007004113.shtm.

    China National Coal Association. White paper on informatization infrastructure construction of coal enterprises based on industrial Internet(2022 edition)[EB/OL]. [2023-05-04]. https://max.book118.com/html/2022/0625/8125134007004113.shtm.
    [7] 金智新,王宏伟,付翔. HCPS理论体系下新一代智能煤矿发展路径[J]. 工矿自动化,2022,48(10):1-12.

    JIN Zhixin,WANG Hongwei,FU Xiang. Development path of new generation intelligent coal mine under HCPS theory system[J]. Journal of Mine Automation,2022,48(10):1-12.
    [8] 朱梦博. 采煤工作面高精度三维地质模型动态构建技术研究[D]. 北京:煤炭科学研究总院,2021.

    ZHU Mengbo. Dynamic construction of high-precision 3D geological model for coal mining panel[D]. Beijing:China Coal Research Institute,2021.
    [9] JIA Qingren,CHE Defu,LI Wenwen. Effective coal seam surface modeling with an improved anisotropy-based,multiscale interpolation method[J]. Computers and Geosciences,2019,124:72-84. doi: 10.1016/j.cageo.2018.12.008
    [10] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628-2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628-2635.
    [11] 贾庆仁,车德福,李佳徐,等. 动态精化的煤层三维建模方法[J]. 东北大学学报(自然科学版),2018,39(5):726-730.

    JIA Qingren,CHE Defu,LI Jiaxu,et al. Three-dimensional modeling method of coal seam with gradual refinement[J]. Journal of Northeastern University(Natural Science),2018,39(5):726-730.
    [12] 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983.

    LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983.
    [13] 谢洋. 基于LSTM的煤层地质模型动态预测方法研究[D]. 徐州:中国矿业大学,2021.

    XIE Yang. Research on dynamic prediction method of coal seam geological model based on LSTM[D]. Xuzhou:China University of Mining and Technology,2021.
    [14] 郭昌放. 基于多源数据协同和智能算法的煤矿工作面透明化系统研究[D]. 徐州:中国矿业大学,2020.

    GUO Changfang. Research on transparency system of working face based on multi-source data collaboration and intelligent algorithms[D]. Xuzhou:China University of Mining and Technology,2020.
    [15] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008.

    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
    [16] 司垒,王忠宾,熊祥祥,等. 基于改进U−net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(增刊1):578-589. doi: 10.13225/j.cnki.jccs.2020.1011

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578-589. doi: 10.13225/j.cnki.jccs.2020.1011
    [17] 熊祥祥. 基于深度学习的综采工作面煤岩识别方法研究[D]. 徐州:中国矿业大学,2020.

    XIONG Xiangxiang. Research on coal-rock recognition method of fully-mechanized coal mining face based on deep learning[D]. Xuzhou:China University of Mining and Technology,2020.
    [18] 王星,高峰,陈吉,等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报,2021,46(9):3066-3078.

    WANG Xing,GAO Feng,CHEN Ji,et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society,2021,46(9):3066-3078.
    [19] 王雅东. 基于CPS理念的采煤机自适应截割控制研究[D]. 阜新:辽宁工程技术大学,2022.

    WANG Yadong. Study on self-adaptive cutting control of shearer based on CPS[D]. Fuxin:Liaoning Technical University,2022.
    [20] 樊坤. 基于记忆截割的采煤机自适应控制技术研究[D]. 焦作:河南理工大学,2021.

    FAN Kun. Research on adaptive control technology of shearer based on memory cutting[D]. Jiaozuo:Henan Polytechnic University,2021.
    [21] 刘力涛,董淑棠. 基于BP神经网络的采煤机截割自适应调速控制[J]. 煤矿机械,2020,41(8):197-199.

    LIU Litao,DONG Shutang. Adaptive speed regulation control of shearer cutting based on BP neural network[J]. Coal Mine Machinery,2020,41(8):197-199.
    [22] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
    [23] 张锦涛,付翔,王然风,等. 智采工作面中部液压支架集群自动化后人工调控决策模型[J]. 工矿自动化,2022,48(10):20-25.

    ZHANG Jintao,FU Xiang,WANG Ranfeng,et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25.
    [24] 贾思锋,付翔,王然风,等. 液压支架时空区域支护质量动态评价[J]. 工矿自动化,2022,48(10):26-33,81.

    JIA Sifeng,FU Xiang,WANG Ranfeng,et al. Dynamic evaluation of support quality of hydraulic support in space-time region[J]. Journal of Mine Automation,2022,48(10):26-33,81.
    [25] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666. doi: 10.13225/j.cnki.jccs.XR20.1897

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666. doi: 10.13225/j.cnki.jccs.XR20.1897
    [26] 付翔,王然风. 基于意识−情感−智能三位一体的煤矿供液过程控制[J]. 智能系统学报,2018,13(4):640-649.

    FU Xiang,WANG Ranfeng. Hydraulic fluid supply process control of coal mine based on consciousness,emotion,and intelligence[J]. CAAI Transactions on Intelligent Systems,2018,13(4):640-649.
    [27] 付翔,王然风,赵阳升. 工作面支架液压系统仿真与稳压供液技术[J]. 煤炭学报,2018,43(5):1471-1478. doi: 10.13225/j.cnki.jccs.2017.1143

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Investigation of hydraulic system simulation and fluid feeding technology with steady pressure of working face supports[J]. Journal of China Coal Society,2018,43(5):1471-1478. doi: 10.13225/j.cnki.jccs.2017.1143
    [28] 付翔,王然风. 工作面供液系统与液压支架协同自适应控制模型设计[J]. 采矿与岩层控制工程学报,2020,2(3):90-98.

    FU Xiang,WANG Ranfeng. Cooperative self-adaptive control model of fluid feeding system and hydraulic supports in working face[J]. Journal of Mining and Strata Control Engineering,2020,2(3):90-98.
    [29] 付翔,王然风,赵阳升,等. 基于交叠协同逻辑的液压支架运行自适应稳压供液控制方法[J]. 煤炭学报,2020,45(5):1891-1900.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng,et al. Self-adaptive control method of fluid feeding with steady pressure for hydraulic support based on overlapping synergetic logic[J]. Journal of China Coal Society,2020,45(5):1891-1900.
    [30] WANG Pengjiang,SHEN Yang,LI Rui,et al. Multisensor information-based adaptive control method for cutting head speed of roadheader[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2021,235(11):1941-1955.
    [31] 宗凯,符世琛,吴淼,等. 基于GA−BP网络的掘进机截割臂摆速控制策略与仿真[J]. 煤炭学报,2021,46(增刊1):511-519. doi: 10.13225/j.cnki.jccs.2020.1022

    ZONG Kai,FU Shichen,WU Miao,et al. Simulation of control strategy for swing speed of roadheader's cutting arm based on GA-BP network[J]. Journal of China Coal Society,2021,46(S1):511-519. doi: 10.13225/j.cnki.jccs.2020.1022
    [32] ZHANG Deyi,LIU Songyong,JIA Xinqing,et al. Full coverage cutting path planning of robotized roadheader to improve cutting stability of the coal lane cross-section containing gangue[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(1):579-592.
    [33] WANG Suyu,WU Miao. Cutting trajectory planning of sections with complex composition for roadheader[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(4):1441-1452.
    [34] 沈显庆,王贺,马志鹏,等. 基于栅格法与改进A*算法的掘进机截割轨迹规划[J]. 黑龙江科技大学学报,2021,31(5):642-647. doi: 10.3969/j.issn.2095-7262.2021.05.016

    SHEN Xianqing,WANG He,MA Zhipeng,et al. Cutting trajectory planning of roadheader based on raster method and improved A* algorithm[J]. Journal of Heilongjiang University of Science and Technology,2021,31(5):642-647. doi: 10.3969/j.issn.2095-7262.2021.05.016
    [35] 王苏彧,马登成,任泽,等. 悬臂式掘进机断面成型轨迹多目标优化方法研究[J]. 仪器仪表学报,2021,41(8):183-192.

    WANG Suyu,MA Dengcheng,REN Ze,et al. A multi-objective optimization method for cantilever roadheader section forming trajectory[J]. Chinese Journal of Scientific Instrument,2021,41(8):183-192.
    [36] 乔佳伟. 基于机器视觉的煤矿井下锚护作业钢带孔识别研究[D]. 北京:煤炭科学研究总院,2022.

    QIAO Jiawei. Research on the identification of steel belt holes for underground anchoring operations in coal mines based on machine vision[D]. Beijing:China Coal Research Institute,2022.
    [37] 张夫净,王宏伟,王浩然,等. 煤矿巷道支护钢带锚孔智能识别与定位[J]. 工矿自动化,2022,48(10):76-81. doi: 10.13272/j.issn.1671-251x.2022080070

    ZHANG Fujing,WANG Hongwei,WANG Haoran,et al. Intelligent identification and positioning of steel belt anchor hole in coal mine roadway support[J]. Journal of Mine Automation,2022,48(10):76-81. doi: 10.13272/j.issn.1671-251x.2022080070
    [38] 宁小亮. 基于多源信息融合的煤与瓦斯突出动态预警模型[J]. 矿业安全与环保,2020,47(3):1-5,16.

    NING Xiaoliang. Dynamic early warning model of coal and gas outburst based on multi-source information fusion[J]. Mining Safety & Environmental Protection,2020,47(3):1-5,16.
    [39] YOU Mengjie,LI Shuang,LI Dingwei,et al. Applications of artificial intelligence for coal mine gas risk assessment[J]. Safety Science,2021,143. DOI: 10.1016/j.ssci.2021.105420.
    [40] 曹超凡. 基于LSTM的煤矿底板突水预警模型研究与应用[D]. 西安:西安建筑科技大学,2017.

    CAO Chaofan. Research and application of forecasting model for coal mine water inrush based on LSTM[D]. Xi'an:Xi'an University of Architecture and Technology,2017.
    [41] 李兴莉,蔡红梅. 基于GA−BP神经网络的矿井突水判别数学模型研究[J]. 煤炭技术,2019,38(5):121-123.

    LI Xingli,CAI Hongmei. Research on mine water inrush discriminating mathematical model based on GA-BP neural network[J]. Coal Technology,2019,38(5):121-123.
    [42] 邓军,王志强,王伟峰,等. 基于LSTM−AE−OCSVM的带式输送机火灾监测隐患识别技术[J]. 煤炭技术,2023,42(1):225-229.

    DENG Jun,WANG Zhiqiang,WANG Weifeng,et al. Hidden danger identification technology of belt conveyor fire monitoring based on LSTM-AE-OCSVM[J]. Coal Technology,2023,42(1):225-229.
    [43] 来兴平,万培烽,单鹏飞,等. 基于免疫粒子群混合算法优化BP网络的矿压预测方法[J]. 西安科技大学学报,2023,43(1):1-8.

    LAI Xingping,WAN Peifeng,SHAN Pengfei,et al. Mine pressure prediction method based on immune algorithm-particle swarm optimization BP network[J]. Journal of Xi'an University of Science and Technology,2023,43(1):1-8.
    [44] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [45] 陈结,杜俊生,蒲源源,等. 冲击地压“双驱动”智能预警架构与工程应用[J]. 煤炭学报,2022,47(2):791-806.

    CHEN Jie,DU Junsheng,PU Yuanyuan,et al. "Dual-driven" intelligent pre-warning framework of the coal burst disaster in coal mine and its engineering application[J]. Journal of China Coal Society,2022,47(2):791-806.
    [46] 崔峰,何仕凤,来兴平,等. 基于相空间重构与深度学习的冲击地压矿井时间序列b值趋势研究[J]. 煤炭学报,2023,48(5):2022-2034.

    CUI Feng,HE Shifeng,LAI Xingping,et al. Trend of time sequence b value of rock burst mine based on phase space reconstruction and deep learning[J]. Journal of China Coal Society,2023,48(5):2022-2034.
    [47] 何生全,何学秋,宋大钊,等. 冲击地压多参量集成预警模型及智能判识云平台[J]. 中国矿业大学学报,2022,51(5):850-862. doi: 10.3969/j.issn.1000-1964.2022.5.zgkydxxb202205003

    HE Shengquan,HE Xueqiu,SONG Dazhao,et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology,2022,51(5):850-862. doi: 10.3969/j.issn.1000-1964.2022.5.zgkydxxb202205003
    [48] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [49] 李国民,章鳌,贺耀宜,等. 智能矿井多元监控数据集成关键技术研究[J]. 工矿自动化,2022,48(8):127-130,146.

    LI Guomin,ZHANG Ao,HE Yaoyi,et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130,146.
    [50] 谭章禄,王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术[J]. 工矿自动化,2022,48(5):6-14.

    TAN Zhanglu,WANG Meijun. Research on the concept connotation,development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation,2022,48(5):6-14.
    [51] 温亮,李丹宁. 基于EtherNet/IP的井工煤矿数据治理研究[J]. 煤炭科学技术,2022,50(增刊1):227-232.

    WEN Liang,LI Danning. Research on data management of coal mine based on EtherNet/IP[J]. Coal Science and Technology,2022,50(S1):227-232.
    [52] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627.

    QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627.
    [53] 夏向学,晏涛,连会青,等. 基于改进DK算法的煤矿水害逃生三维仿真平台研究[J]. 煤炭技术,2022,41(10):203-206. doi: 10.13301/j.cnki.ct.2022.10.048

    XIA Xiangxue,YAN Tao,LIAN Huiqing,et al. Research on 3D simulation platform of coal mine water disaster escape based on improved DK algorithm[J]. Coal Technology,2022,41(10):203-206. doi: 10.13301/j.cnki.ct.2022.10.048
    [54] 王恩元,李忠辉,李保林,等. 煤矿瓦斯灾害风险隐患大数据监测预警云平台与应用[J]. 煤炭科学技术,2022,50(1):142-150.

    WANG Enyuan,LI Zhonghui,LI Baolin,et al. Big data monitoring and early warning cloud platform for coal mine gas disaster risk and potential danger and its application[J]. Coal Science and Technology,2022,50(1):142-150.
    [55] 周兰姜,李正东,罗玉平. 基于无线传感器网络的瓦斯浓度监测系统的硬件设计[J]. 传感技术学报,2007,20(11):2522-2525. doi: 10.3969/j.issn.1004-1699.2007.11.036

    ZHOU Lanjiang,LI Zhengdong,LUO Yuping. Hardware platform of gas density monitor system based on wireless sensor network[J]. Chinese Journal of Sensors and Actuators,2007,20(11):2522-2525. doi: 10.3969/j.issn.1004-1699.2007.11.036
    [56] 窦林名,王盛川,巩思园,等. 冲击矿压风险智能判识与监测预警云平台[J]. 煤炭学报,2020,45(6):2248-2255. doi: 10.13225/j.cnki.jccs.ZN20.0318

    DOU Linming,WANG Shengchuan,GONG Siyuan,et al. Cloud platform of rock-burst intelligent risk assessment and multi-parameter monitoring and early warning[J]. Journal of China Coal Society,2020,45(6):2248-2255. doi: 10.13225/j.cnki.jccs.ZN20.0318
    [57] 郑林江,周龙辉,王杰,等. 基于物联网的煤矿粉尘监测云服务平台设计[J]. 煤炭科学技术,2019,47(7):164-170. doi: 10.13199/j.cnki.cst.2019.07.020

    ZHENG Linjiang,ZHOU Longhui,WANG Jie,et al. Design of coal mine dust monitoring cloud service platform based on Internet of things[J]. Coal Science and Technology,2019,47(7):164-170. doi: 10.13199/j.cnki.cst.2019.07.020
    [58] 王永,刘金海,王颜亮,等. 煤矿冲击地压多参量监测预警平台研究[J]. 煤炭工程2018,50(4):19-21.

    WANG Yong,LIU Jinhai,WANG Yanliang,et al. Study on multi-parameter monitoring and warning platform for rock burst[J]. Coal Engineering,2018,50(4):19-21.
  • 加载中
图(2)
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  127
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回