Research on weighting strategies for safety status evaluation indicators in coal mine working faces
-
摘要: 煤矿工作面安全状态精准评价可促进矿井安全管理水平和防灾抗灾能力提升。以CH4浓度、CO2浓度、CO浓度、O2浓度、温度、风速6种工作面环境监测数据为评价指标,对工作面安全状态进行评价分析。为合理确定评价指标的权重,提高安全评价结果的准确性,采用模糊层次分析法(FAHP)计算评价指标的主观权重、G−GRITIC法计算指标的客观权重,通过基于改进博弈论(IGT)的组合赋权法将主观权重与客观权重结合,得出评价指标的组合权重,解决了决策过程中主客观信息不一致性问题。基于陕西黄陵二号煤矿有限公司209综采工作面安全监控系统采集数据,对基于IGT的组合赋权法进行实验验证,结果表明该方法有效避免了线性加权法、平均加权法的主观判断性,优化了基于博弈论(GT)的组合赋权法的偏差结果,得到的评价指标更加合理,可获得更加准确的煤矿工作面安全状态评价结果。Abstract: Accurate evaluation of the safety status of the working face can promote the improvement of mine safety management level and disaster prevention and resilience. Using CH4 concentration, CO2 concentration, CO concentration, O2 concentration, temperature, and wind speed as evaluation indicators, the safety status of the working face is evaluated and analyzed. To reasonably determine the weight of evaluation indicators and improve the accuracy of safety evaluation results, the fuzzy analytical hierarchy process(FAHP) is used to calculate the subjective weight of evaluation indicators, and the G-GRITIC method is used to calculate the objective weight of indicators. The combination weighting method based on improved game theory (IGT) combines subjective weight with objective weight to obtain the combination weight of evaluation indicators, solving the problem of inconsistent subjective and objective information in the decision-making process. Based on the data collected by the safety monitoring system of the 209 fully mechanized working face of Shaanxi Huangling No.2 Coal Mine Co., Ltd., experimental verification is conducted on the IGT based combination weighting method. The results show that this method effectively avoids the subjective judgment of linear weighting method and average weighting method, optimizes the deviation results of the game theory (GT) combination weighting method. It obtains more reasonable evaluation indicators, which can obtain more accurate evaluation results of the safety status of the coal mine working face.
-
表 1 FAHP评分
Table 1. Grade of fuzzy analytical hierarchy process(FAHP)
标度 定义 说明 0.1 绝对不重要 指标i比指标j绝对不重要 0.2 非常不重要 指标i比指标j非常不重要 0.3 比较不重要 指标i比指标j比较不重要 0.4 稍微不重要 指标i比指标j稍微不重要 0.5 同等重要 指标i比指标j同等重要 0.6 稍微重要 指标i比指标j稍微重要 0.7 比较重要 指标i比指标j比较重要 0.8 非常重要 指标i比指标j非常重要 0.9 绝对重要 指标i比指标j绝对重要 表 2 工作面安全评价指标部分采样数据原始值
Table 2. Part original sample values of evaluation indexes for working face safety status
时间 CH4体积分数/% CO2体积分数/% CO体积分数/10−6 O2体积分数/% 温度/℃ 风速/(m·s−1) 2022−06−01T00:00:00 0.402 1 0.102 1 8.046 0 20.023 4 23.520 0 1.615 2 2022−06−01T00:00:30 0.450 1 0.092 2 14.059 0 20.521 2 23.550 0 1.704 1 2022−06−01T00:01:00 0.451 0 0.020 3 12.212 0 20.812 0 23.430 0 1.702 2 2022−06−01T00:01:30 0.460 3 0.060 5 10.263 0 20.112 3 23.610 0 1.656 0 2022−06−01T00:02:00 0.500 4 0.024 8 8.185 0 20.503 0 23.560 0 1.705 8 2022−06−01T00:02:30 0.450 4 0.071 2 9.492 0 20.184 5 23.010 0 1.727 0 2022−06−01T00:03:00 0.401 2 0.032 6 11.563 0 20.512 7 23.530 0 1.684 1 2022−06−01T00:03:30 0.385 6 0.015 8 12.451 0 20.502 6 23.500 0 1.707 8 2022−06−01T00:04:00 0.384 2 0.091 1 13.459 0 20.905 8 23.970 0 1.752 6 2022−06−01T00:04:30 0.353 1 0.090 5 12.458 0 20.954 4 23.800 0 1.724 6 表 3 各评价指标的Gini系数、信息系数、一般信息量
Table 3. Gini coefficient, information coefficient and general information coefficient of each evaluation index
指标 Gini系数 信息系数 一般信息量 CH4浓度 0.112 752 96 4.973 292 52 0.560 753 48 CO2浓度 0.057 725 47 4.958 896 51 0.286 254 61 CO浓度 0.125 007 33 4.973 873 11 0.621 770 60 O2浓度 0.088 813 38 4.965 361 51 0.440 990 54 温度 0.119 377 41 4.960 061 89 0.592 119 36 风速 0.121 954 45 4.966 484 91 0.605 684 93 表 4 各评价指标的组合权重
Table 4. Combined weight of each evaluation index
指标 组合权重 指标 组合权重 CH4浓度 0.179 O2浓度 0.156 CO2浓度 0.155 温度 0.165 CO浓度 0.172 风速 0.173 表 5 不同主观权重法计算结果
Table 5. Calculated results of different subjective weighting methods
指标 主观权重 FAHP AHP 优序图法 G1法 CH4浓度 0.245 0.333 0.306 0.332 CO2浓度 0.096 0.048 0.028 0.067 CO浓度 0.200 0.198 0.194 0.170 O2浓度 0.101 0.061 0.083 0.087 温度 0.154 0.113 0.139 0.122 风速 0.205 0.246 0.250 0.222 表 6 不同客观权重法计算结果
Table 6. Calculated results of different objective weighting methods
指标 客观权重 G−CRITIC法 CRITIC法 变异系数法 熵权法 CH4浓度 0.180 0.177 0.179 0.176 CO2浓度 0.092 0.147 0.128 0.525 CO浓度 0.200 0.167 0.179 0.129 O2浓度 0.142 0.159 0.151 0.013 温度 0.191 0.165 0.173 0.138 风速 0.195 0.184 0.189 0.019 表 7 不同组合赋权法计算结果
Table 7. Calculated results of different combined weighting methods
指标 组合权重 基于IGT法 基于GT法 平均加权法 线性加权法 CH4浓度 0.179 0.263 0.213 0.226 CO2浓度 0.155 0.095 0.094 0.095 CO浓度 0.172 0.197 0.200 0.200 O2浓度 0.156 0.086 0.122 0.113 温度 0.165 0.138 0.173 0.165 风速 0.173 0.205 0.200 0.202 -
[1] 凌飞,杨鹏. 基于BIM技术的煤矿井下施工安全预警系统研究[J]. 能源与环保,2022,44(8):257-262.LING Fei,YANG Peng. Research on safety early warning system of underground coal mine construction based on BIM technology[J]. China Energy and Environmental Protection,2022,44(8):257-262. [2] 方乾,张晓霞,王霖,等. 智能化煤矿大数据治理关键技术研究、实践与应用[J]. 工矿自动化,2023,49(5):37-45,73.FANG Qian,ZHANG Xiaoxia,WANG Lin,et al. Research,practice and application of key technologies of intelligent coal mine big data governance[J]. Journal of Mine Automation,2023,49(5):37-45,73. [3] 陈孝慈,李东海. 煤矿安全大数据特征及治理方法体系研究[J]. 工矿自动化,2023,49(5):52-58.CHEN Xiaoci,LI Donghai. Research on the coal mine safety big data features and governance method system[J]. Journal of Mine Automation,2023,49(5):52-58. [4] 白少康,陶小燕. 基于Petri网煤矿预警系统模型优化及变化域分析[J]. 黑龙江工业学院学报(综合版),2023,23(2):53-60.BAI Shaokang,TAO Xiaoyan. Model optimization and change region analysis of coal mine early warning system based on Petri net[J]. Journal of Heilongjiang University of Technology(Comprehensive Edition),2023,23(2):53-60. [5] 李达. 厚煤层残煤复采区掘进大巷安全影响因素分析及评价[J]. 煤炭工程,2023,55(7):115-119.LI Da. Analysis and evaluation of safety influencing factors for excavation of main roadway in thick coal seam re-mining area[J]. Coal Engineering,2023,55(7):115-119. [6] 张尔辉,朱权洁,温经林,等. 煤矿冲击危险性多因素耦合评价软件的开发与应用[J]. 中国矿业,2020,29(8):122-128.ZHANG Erhui,ZHU Quanjie,WEN Jinglin,et al. Preparation and application of multi-factor coupling evaluation software for coal mine rockburst hazard[J]. China Mining Magazine,2020,29(8):122-128. [7] 李冠宇. 露天煤矿开挖高边坡稳定性及风险评价研究[D]. 西安:长安大学,2022.LI Guanyu. Study on the stability and risk evaluation of high slopes in opencast coal mine excavation[D]. Xi'an:Chang'an University,2022. [8] 郭松垚,陈惜缘,解雯心,等. 基于优序图和EGM法的工程施工安全管理评价研究[J]. 山西建筑,2023,49(15):195-198.GUO Songyao,CHEN Xiyuan,XIE Wenxin,et al. Study on construction safety management evaluation based on optimal sequence diagram and EGM method[J]. Shanxi Architecture,2023,49(15):195-198. [9] 陈帮洪,陈星明,粟登峰,等. 基于最小二乘法组合赋权−TOPSIS法的采矿方法优选[J]. 化工矿物与加工,2023,52(3):10-15.CHEN Banghong,CHEN Xingming,SU Dengfeng,et al. Optimization of mining method based on least squares method combined with weighting-TOPSIS[J]. Industrial Minerals & Processing,2023,52(3):10-15. [10] 汪志萼,王学强,张峰飞,等. 基于博弈组合赋权与秩和比法的煤矿通风安全生产标准化管理体系建设研究[J]. 华北科技学院学报,2023,20(3):7-13.WANG Zhi'e,WANG Xueqiang,ZHANG Fengfei,et al. Evaluation of standardized management system of coal mine ventilation safety production based on CW-RSR[J]. Journal of North China Institute of Science and Technology,2023,20(3):7-13. [11] 黄家远. 基于IFAHP−熵权法的煤矿瓦斯防治系统安全评价[J]. 中国矿山工程,2022,51(4):9-15.HUANG Jiayuan. Safety assessment of coal mine gas control system based on IFAHP-entropy weight method[J]. China Mine Engineering,2022,51(4):9-15. [12] 郜彤,张瑞新,郜赛超,等. 基于云模型和组合赋权的煤矿安全风险评价[J]. 工矿自动化,2019,45(12):23-28.GAO Tong,ZHANG Ruixin,GAO Saichao,et al. Coal mine safety risk assessment based on cloud model and combination weighting[J]. Industry and Mine Automation,2019,45(12):23-28. [13] 毕娟,李希建. 基于博弈论组合赋权灰靶模型的煤矿安全综合评价[J]. 中国安全生产科学技术,2019,15(7):113-118.BI Juan,LI Xijian. Comprehensive evaluation of coal mine safety based on grey target model with combination weighting of game theory[J]. Journal of Safety Science and Technology,2019,15(7):113-118. [14] 薛森,李文平,郭启琛,等. 基于FAHP−GRA评价方法的顶板承压含水层富水性预测研究[J]. 金属矿山,2018(4):168-172.XUE Sen,LI Wenping,GUO Qichen,et al. Prediction of water abundance of the roof confined aquifer strata based on FAHP−GRA evaluation method[J]. Metal Mine,2018(4):168-172. [15] 吕志鹏,吴鸣,宋振浩,等. 电能质量CRITIC−TOPSIS综合评价方法[J]. 电机与控制学报,2020,24(1):137-144.LYU Zhipeng,WU Ming,SONG Zhenhao,et al. Comprehensive evaluation of power quality on CRITIC-TOPSIS method[J]. Electric Machines and Control,2020,24(1):137-144. [16] 蒋仲安,付恩琦. FAHP法在矿井防尘供水管网综合性能评价中的应用[J]. 煤炭技术,2017,36(12):114-116.JIANG Zhong'an,FU Enqi. Application of FAHP method in comprehensive evaluation of mine dust-proof water supply network[J]. Coal Technology,2017,36(12):114-116. [17] 徐星,田坤云,赵新涛,等. 基于折衷权重−模糊综合评价法FCE的煤矿水害安全评价[J]. 煤矿安全,2017,48(9):241-244.XU Xing,TIAN Kunyun,ZHAO Xintao,et al. Coal mine water disaster safety evaluation based on compromise weight and fuzzy comprehensive evaluation method[J]. Safety in Coal Mines,2017,48(9):241-244. [18] 王沛文,林岩. 基于ANP与模糊TOPSIS−RITIC方法的不确定多属性决策模型[J]. 数学的实践与认识,2021,51(6):157-169.WANG Peiwen,LIN Yan. Uncertain multi-attribute decision-making model based on ANP and Fuzzy TOPSIS-CRITIC method[J]. Mathematics in Practice and Theory,2021,51(6):157-169. [19] 姜洋. 基于群决策层次分析和因子分析的CW−FCEM煤矿冲击地压评价模型[J]. 煤矿安全,2019,50(9):187-191.JIANG Yang. CW-FCEM evaluation model of rock burst in coal mine based on group decision analytic hierarchy process and factor analysis[J]. Safety in Coal Mines,2019,50(9):187-191. [20] 胡云飞,李重情,褚恒滨. 基于改进未知测度的煤矿坚硬断层深孔爆破效果评价[J]. 中国矿业,2023,32(3):80-85.HU Yunfei,LI Zhongqing,CHU Hengbin. Evaluation of deep hole blasting effect of hard fault in coal mine based on improved unascertained measure[J]. China Mining Magazine,2023,32(3):80-85.