Volume 50 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
JIN Bing, ZHANG Lang, LI Wei, et al. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090
Citation: JIN Bing, ZHANG Lang, LI Wei, et al. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090

Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning

doi: 10.13272/j.issn.1671-251x.2024080090
  • Received Date: 2024-08-30
  • Rev Recd Date: 2024-10-29
  • Available Online: 2024-09-29
  • To effectively utilize dust suppression measures in fully mechanized excavation faces, this study proposed a rapid prediction algorithm for the flow field based on proper orthogonal decomposition (POD) and machine learning. First, computational fluid dynamics (CFD) technology was used to simulate the air flow field and dust concentration field under various conditions, generating high-dimensional flow field data. Then, the POD method was applied to reduce the dimensionality of this data, extracting core modes that captured the main characteristics of the flow field and producing basis function modes and mode coefficients. Machine learning techniques were subsequently used to predict the mode coefficients that accounted for over 90% of the total energy under different conditions, enabling predictions of mode coefficients for unknown conditions. Finally, by reconstructing the flow or dust concentration field data using the predicted mode coefficients and basis function modes, rapid and accurate predictions for the flow field in excavation faces were achieved. The results showed that the numerical simulation model for the excavation face had a relative error within 3%, accurately reflecting the actual air flow and dust distribution. Selecting the first five modes for the flow field and the first seven modes for the dust concentration field balanced the accuracy and efficiency of POD reconstruction. The support vector machine (SVM) model outperformed the Random Forest and Neural Network models in predicting mode coefficients. For 60 different conditions, the relative errors between the POD and SVM-predicted flow velocity and dust concentration, and the CFD results, were 0.36 m/s and 86.24 mg/m³, respectively. The average prediction time for the flow and dust concentration fields was 73 seconds, achieving high-precision, rapid predictions for airflow and dust concentration in mine excavation faces.

     

  • loading
  • [1]
    袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1-7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1-7.
    [2]
    中华人民共和国国家卫生健康委员会规划发展与信息化司. 2018年我国卫生健康事业发展统计公报[EB/OL]. [2024-08-22]. http://www.Nhc.gov.cn/ guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0.shtml.

    Planning,Development and Information Technology Department of National Health Commission of the People’s Republic of China. 2018 China's health development statistical bulletin[EB/OL]. [2024-08-22]. http://www.Nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0.shtml.
    [3]
    赵春双,刘剑,田瑞祥,等. 压入式掘进通风流场PIV实验研究[J]. 矿业安全与环保,2017,44(2):21-25,30. doi: 10.3969/j.issn.1008-4495.2017.02.005

    ZHAO Chunshuang,LIU Jian,TIAN Ruixiang,et al. PIV experiment study on flow field of forced ventilation system for roadway heading[J]. Mining Safety & Environmental Protection,2017,44(2):21-25,30. doi: 10.3969/j.issn.1008-4495.2017.02.005
    [4]
    韩敏,王建国,王康. 多抽风筒对综掘面除尘的影响研究[J]. 矿业安全与环保,2022,49(5):114-118.

    HAN Min,WANG Jianguo,WANG Kang. Study on the influence of multiple exhaust pipes on dust removal in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(5):114-118.
    [5]
    李天宇,陈曦,钟文琪. 基于CFD与POD的煤粉锅炉三维速度场快速预测[J]. 东南大学学报(自然科学版),2022,52(4):641-649.

    LI Tianyu,CHEN Xi,ZHONG Wenqi. Rapid prediction of three-dimensional velocity field of pulverized coal boiler based on CFD and POD[J]. Journal of Southeast University (Natural Science Edition),2022,52(4):641-649.
    [6]
    陈刚,李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展,2011,41(6):686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009

    CHEN Gang,LI Yueming. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics,2011,41(6):686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [7]
    傅奇星,张之豪,余秋阳,等. 基于POD模态拟合的汽车尾流场重构[C]. 中国汽车工程学会汽车空气动力学分会学术年会,上海,2022.

    FU Qixing,ZHANG Zhihao,YU Qiuyang,et al. Reconstruction of automobile wake based on POD modes fitting[C]. Annual Conference of the Automotive Aerodynamics Branch of the Chinese Society of Automotive Engineers,Shanghai,2022.
    [8]
    王磊,高丽敏,茅晓晨,等. 基于POD方法的对转压气机叶顶非定常流场分析[J/OL]. 航空动力学报:1-16[2024-08-22]. https://doi.org/10.13224/j.cnki.jasp.20220896.

    WANG Lei,GAO Limin,MAO Xiaochen,et al. Analysis of tip unsteady flow field in a counter-rotating compressor based on POD method[J/OL]. Journal of Aerospace Power:1-16 [2024-08-22]. https://doi.org/10.13224/j.cnki.jasp.20220896.
    [9]
    孙翀,田甜,竺晓程,等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报,2022,56(1):45-52.

    SUN Chong,TIAN Tian,ZHU Xiaocheng,et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University,2022,56(1):45-52.
    [10]
    贾续毅,龚春林,李春娜. 基于POD和BPNN的流场快速计算方法[J]. 西北工业大学学报,2021,39(6):1212-1221. doi: 10.3969/j.issn.1000-2758.2021.06.006

    JIA Xuyi,GONG Chunlin,LI Chunna. Fast flow simulation method based on POD and BPNN[J]. Journal of Northwestern Polytechnical University,2021,39(6):1212-1221. doi: 10.3969/j.issn.1000-2758.2021.06.006
    [11]
    肖颖,肖翔域,段壮,等. 采用本征正交分解和长短期记忆网络模型的离心泵流场预测[J/OL]. 西安交通大学学报:1-11[2024-08-22]. http://kns.cnki.net/kcms/detail/61.1069.T.20240703.1631.002.html.

    XIAO Ying,XIAO Xiangyu,DUAN Zhuang,et al. Flow field prediction in centrifugal pump based on the proper orthogonal decomposition-radial basis function model[J/OL]. Journal of Xi'an Jiaotong University:1-11 [2024-08-22]. http://kns.cnki.net/kcms/detail/61.1069.T.20240703.1631.002.html.
    [12]
    LIU Qiang,NIE Wen,HUA Yun,et al. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face:a case study[J]. Powder Technology,2018,329:371-385. doi: 10.1016/j.powtec.2018.01.064
    [13]
    AMIRI Z,MOVAHEDIRAD S. Bubble-induced particle mixing in a 2-D gas-solid fluidized bed with different bed aspect ratios:a CFD-DPM study[J]. Powder Technology,2017,320:637-645. doi: 10.1016/j.powtec.2017.07.097
    [14]
    HU Shengyong,LIAO Qi,FENG Guorui,et al. Numerical study of gas-solid two-phase flow around road-header drivers in a fully mechanized excavation face[J]. Powder Technology,2019,344:959-969. doi: 10.1016/j.powtec.2018.12.076
    [15]
    于欣,陈连军,刘国明. 喷浆作业粉尘分布影响因素的数值模拟[J]. 矿业研究与开发,2017,37(2):97-101.

    YU Xin,CHEN Lianjun,LIU Guoming. Numerical simulation of influencing factors on dust distribution during shotcreting[J]. Mining Research and Development,2017,37(2):97-101.
    [16]
    周刚,张琦,白若男,等. 大采高综采面风流−呼尘耦合运移规律CFD数值模拟[J]. 中国矿业大学学报,2016,45(4):684-693.

    ZHOU Gang,ZHANG Qi,BAI Ruonan,et al. CFD simulation of air-respirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Mining & Technology,2016,45(4):684-693.
    [17]
    CHENG Weimin,YU Haiming,ZHOU Gang,et al. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM[J]. Process Safety and Environmental Protection,2016,104:240-253. doi: 10.1016/j.psep.2016.09.004
    [18]
    ZHAO Kai,JANUTOLO M,BARLA G. A completely 3D model for the simulation of mechanized tunnel excavation[J]. Rock Mechanics and Rock Engineering,2012,45(4):475-497. doi: 10.1007/s00603-012-0224-3
    [19]
    ROWLEY C W,COLONIUS T,MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D:Nonlinear Phenomena,2004,189(1/2):115-129.
    [20]
    李鑫灵,袁梅,董洪,等. PSO−SVM模型在掘进工作面突出预警系统中的应用[J]. 煤矿安全,2021,52(9):90-95.

    LI Xinling,YUAN Mei,DONG Hong,et al. Application of PSO-SVM model in outburst warning system of heading face[J]. Safety in Coal Mines,2021,52(9):90-95.
    [21]
    成小雨,周爱桃,郭焱振,等. 基于随机森林与支持向量机的回采工作面瓦斯涌出量预测方法[J]. 煤矿安全,2022,53(10):205-211.

    CHENG Xiaoyu,ZHOU Aitao,GUO Yanzhen,et al. Prediction method of gas emission based on random forest and support vector machine[J]. Safety in Coal Mines,2022,53(10):205-211.
    [22]
    张浪,张迎辉,张逸斌,等. 基于机器学习的通风网络故障诊断方法研究[J]. 工矿自动化,2022,48(3):91-98.

    ZHANG Lang,ZHANG Yinghui,ZHANG Yibin,et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91-98.
    [23]
    刘彦青. 基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究[J]. 矿业安全与环保,2021,48(2):101-106.

    LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection,2021,48(2):101-106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (48) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return