Citation: | WANG Fuqi, WANG Zhifeng, JIN Jiancheng, et al. Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model[J]. Journal of Mine Automation,2024,50(9):59-65, 137. doi: 10.13272/j.issn.1671-251x.2024080011 |
[1] |
王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.
WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
|
[2] |
王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.
WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.
|
[3] |
王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.
WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
|
[4] |
王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.
WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51.
|
[5] |
王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.
WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
|
[6] |
王家臣,张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报,2015,40(3):487-493.
WANG Jiachen,ZHANG Jinwang. BBR study of top-coal drawing law in longwall top-coal caving mining[J]. Journal of China Coal Society,2015,40(3):487-493.
|
[7] |
李良晖. 放顶煤工作面煤矸混合度自动识别研究进展[J]. 煤炭工程,2017,49(10):30-34.
LI Lianghui. Research progress of automatic recognition of coal-gangue mixedness in longwall top-coal caving face[J]. Coal Engineering,2017,49(10):30-34.
|
[8] |
李嘉豪,司垒,王忠宾,等. 综放工作面煤矸识别技术及其应用[J]. 仪器仪表学报,2024,45(1):1-15.
LI Jiahao,SI Lei,WANG Zhongbin,et al. Coal gangue identification technology and its application in fully-mechanized coal mining face[J]. Chinese Journal of Scientific Instrument,2024,45(1):1-15.
|
[9] |
李德永,王国法,郭永存,等. 基于CFS−YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术,2024,52(6):226-237.
LI Deyong,WANG Guofa,GUO Yongcun,et al. Image recognition method of coal gangue in complex working conditions based on CFS-YOLO algorithm[J]. Coal Science and Technology,2024,52(6):226-237.
|
[10] |
何凯,程刚,王希,等. 基于CED−YOLOv5s模型的煤矸识别方法研究[J]. 工矿自动化,2024,50(2):49-56,82.
HE Kai,CHENG Gang,WANG Xi,et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56,82.
|
[11] |
滕文想,王成,费树辉. 基于HGTC−YOLOv8n模型的煤矸识别算法研究[J]. 工矿自动化,2024,50(5):52-59.
TENG Wenxiang,WANG Cheng,FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation,2024,50(5):52-59.
|
[12] |
杨洋,李海雄,胡淼龙,等. 基于YOLOv5−SEDC模型的煤矸分割识别方法[J]. 工矿自动化,2024,50(8):120-126.
YANG Yang,LI Haixiong,HU Miaolong,et al. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation,2024,50(8):120-126.
|
[13] |
王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101.
WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.
|
[14] |
王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.
WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
|
[15] |
贺海涛,王佳豪,张海峰,等. 基于U−Net的放煤状态控制关键技术研究[J]. 煤炭科学技术,2022,50(增刊2):237-243.
HE Haitao,WANG Jiahao,ZHANG Haifeng,et al. Calculation method of gangue content of coal gangue mixed image in fully-mechanized caving based on U-Net[J]. Coal Science and Technology,2022,50(S2):237-243.
|
[16] |
单鹏飞,孙浩强,来兴平,等. 基于改进Faster R−CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382-1394.
SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382-1394.
|
[17] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
|
[18] |
油亚鹏,马波,赵乐,等. 基于CA−YOLOv8的输送带大块煤检测方法 [J/OL]. 计算机辅助设计与图形学学报:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.
YOU Yapeng,MA Bo,ZHAO Le,et al. Large coal detection method for conveyor belt based on CA-YOLOv8[J/OL] Journal of Computer- Aided Design and Graphics:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.
|
[19] |
LIU Yichao,SHAO Zongru,HOFFMANN N. Global attention mechanism:retain information to enhance channel-spaial interactions[EB/OL]. [2024-06-20]. http:// arxiv.org/pdf/2112.05561.
|
[20] |
WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
|
[21] |
杨志渊,罗亮,吴天阳,等. 改进YOLOv8的轻量级光学遥感图像船舶目标检测算法[J]. 计算机工程与应用,2024,60(16):248-257.
YANG Zhiyuan,LUO Liang,WU Tianyang,et al. Improved lightweight ship target detection algorithm for optical remote sensing images with YOLOv8[J]. Computer Engineering and Applications,2024,60(16):248-257.
|