Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LU Xiaoya, LI Haifang. Personnel localization method for low-visibility environments based on improved YOLOv3[J]. Journal of Mine Automation,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085
Citation: LU Xiaoya, LI Haifang. Personnel localization method for low-visibility environments based on improved YOLOv3[J]. Journal of Mine Automation,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085

Personnel localization method for low-visibility environments based on improved YOLOv3

doi: 10.13272/j.issn.1671-251x.2024070085
  • Received Date: 2024-07-24
  • Rev Recd Date: 2024-09-25
  • Available Online: 2024-08-22
  • In coal mines, inadequate lighting and dust obstruction result in personnel targets captured by video monitoring systems appearing as small or low-visibility objects in two-dimensional images. The original YOLOv3 network's Darknet53 feature pyramid structure was insufficient for effectively extracting and preserving detailed information about these targets, leading to inaccurate localization. To address this issue, personnel localization method for low-visibility environments based on improved YOLOv3 was. First, the clarity of coal mine monitoring videos under low-visibility conditions was enhanced using a combination of β function mapping and inter-frame information enhancement techniques. Next, Darknet53 in YOLOv3 was replaced with the lighter Darknet-19, and CIoU was introduced as the loss function to optimize personnel target identification in the enhanced video. Finally, the identified targets were projected from two-dimensional space to three-dimensional space based on the mapping model, completing the personnel localization process. Experiments conducted on monitoring videos from a coal mine in low-visibility conditions revealed the following findings: ① After applying the improved YOLOv3, the brightness, visibility, and various evaluation metrics (average gray level, average contrast, information entropy, and gray spectral bandwidth) of the video frames demonstrated significant improvements compared to the original videos. There was a substantial enhancement in overall lighting conditions and contrast, facilitating better differentiation between targets and backgrounds, thereby validating the effectiveness of the image enhancement techniques employed. ② The improved YOLOv3 accurately identified personnel in the video frames, with no instances of missed detections. ③ Using calibrated objects or manually annotated real three-dimensional positions as benchmarks, the deviation between the projected results and the actual positions was calculated (covering distance deviations in the X, Y, and Z directions). The deviations in both the X and Y directions were below 0.2 m, while the deviation in the Z direction was below 0.002 m, indicating a high mapping effect and localization accuracy of the constructed mapping model.

     

  • loading
  • [1]
    郭文兵,吴东涛,白二虎,等. 我国煤矿智能绿色开采技术现状与展望[J]. 河南理工大学学报(自然科学版),2023,42(5):1-17.

    GUO Wenbing,WU Dongtao,BAI Erhu,et al. Current situation and prospect of intelligent green mining technology in coal mines in China[J]. Journal of Henan Polytechnic University(Natural Science),2023,42(5):1-17.
    [2]
    温贤培. 煤矿现场人员二维精确定位方法[J]. 煤矿安全,2023,54(1):225-229.

    WEN Xianpei. Two-dimensional precise positioning method of coal mine field personnel[J]. Safety in Coal Mines,2023,54(1):225-229.
    [3]
    张寻梦,赵子皓,江晓东. 基于图像和YOLOv3的番茄果实表型参数计算及重量模拟[J]. 江苏农业科学,2023,51(10):193-201.

    ZHANG Xunmeng,ZHAO Zihao,JIANG Xiaodong. Phenotypic parameter calculation and weight simulation of tomato fruit based on image and YOLOv3[J]. Jiangsu Agricultural Sciences,2023,51(10):193-201.
    [4]
    刘晓阳,郑昊琳,刘金强,等. 基于压缩感知改进SP算法的井下人员定位方法[J]. 煤炭技术,2022,41(5):164-167.

    LIU Xiaoyang,ZHENG Haolin,LIU Jinqiang,et al. Method of underground personnel location based on compressed sensing and improved SP algorithm[J]. Coal Technology,2022,41(5):164-167.
    [5]
    WU Bin. Algorithm of underground personnel positioning based on improved Monte Carlo[J]. Wireless Communications and Mobile Computing,2021. DOI: 10.1155/2021/5547944.
    [6]
    王智勇,张宏伟,卜旭辉. 基于UWB与指纹定位的矿井移动目标TOA定位算法[J]. 矿业研究与开发,2024,44(3):192-200.

    WANG Zhiyong,ZHANG Hongwei,BU Xuhui. TOA localization algorithm of underground mine moving target based on UWB and fingerprint localization[J]. Mining Research and Development,2024,44(3):192-200.
    [7]
    CAO Bo,WANG Shibo,GE Shirong,et al. Improving the positioning accuracy of UWB system for complicated underground NLOS environments[J]. IEEE Systems Journal,2021,16(2):1808-1819.
    [8]
    牛宏侠,王春智. 基于HSI空间的沙尘图像增强算法[J]. 北京交通大学学报,2022,46(5):1-8.

    NIU Hongxia,WANG Chunzhi. Sand-dust image enhancement algorithm based on HSI space[J]. Journal of Beijing Jiaotong University,2022,46(5):1-8.
    [9]
    张勇,周斌,王建斌. 多尺度Retinex低照度图像增强的ZYNQ实现[J]. 火力与指挥控制,2023,48(7):156-162.

    ZHANG Yong,ZHOU Bin,WANG Jianbin. Implementation of low-illumination image enhancement based on multi-scale Retinex on ZYNQ[J]. Fire Control & Command Control,2023,48(7):156-1622.
    [10]
    王仁智,孔雅,张春泽. 一种支持任意码率的高斯低通滤波器设计[J]. 电子技术应用,2021,47(7):61-63,68.

    WANG Renzhi,KONG Ya,ZHANG Chunze. Design of a Gaussian low pass filter with arbitrary bit rate[J]. Application of Electronic Technique,2021,47(7):61-63,68.
    [11]
    刘雄彪,杨贤昭,陈洋,等. 基于CIoU改进边界框损失函数的目标检测方法[J]. 液晶与显示,2023,38(5):656-665. doi: 10.37188/CJLCD.2022-0282

    LIU Xiongbiao,YANG Xianzhao,CHEN Yang,et al. Object detection method based on CIoU improved bounding box loss function[J]. Chinese Journal of Liquid Crystals and Displays,2023,38(5):656-665. doi: 10.37188/CJLCD.2022-0282
    [12]
    李功,赵巍,刘鹏,等. 一种用于目标跟踪边界框回归的光滑IoU损失[J]. 自动化学报,2023,49(2):288-306.

    LI Gong,ZHAO Wei,LIU Peng,et al. Smooth-IoU loss for bounding box regression in visual tracking[J]. Acta Automatica Sinica,2023,49(2):288-306.
    [13]
    张莹,严伟. 基于小孔成像光斑的无衍射光分布测量系统[J]. 现代电子技术,2021,44(13):106-110.

    ZHANG Ying,YAN Wei. Non-diffracted light distribution measurement system based on pinhole imaging light spot[J]. Modern Electronics Technique,2021,44(13):106-110.
    [14]
    吴柔莞,徐智勇,张建林. 基于无监督级联的亚像素单应矩阵估计[J]. 半导体光电,2022,43(1):158-163.

    WU Rouwan,XU Zhiyong,ZHANG Jianlin. Sub-pixel homography matrix estimation based on unsupervised cascade[J]. Semiconductor Optoelectronics,2022,43(1):158-163.
    [15]
    李静. 基于最小二乘法的空间坐标转换的非迭代算法[J]. 数学的实践与认识,2022,52(9):115-120.

    LI Jing. A Non-iterative algorithm for spatial coordinate transformation based on least square method[J]. Mathematics in Practice and Theory,2022,52(9):115-120.
    [16]
    谭超,朱荣钊. 基于改进LANDMARC定位算法的人员定位技术研究[J]. 长春工程学院学报(自然科学版),2024,25(1):90-95. doi: 10.3969/j.issn.1009-8984.2024.01.017

    TAN Chao,ZHU Rongzhao. Research on personnel positioning technology based on improved LANDMARC positioning algorithm[J]. Journal of Changchun Institute of Technology(Natural Sciences Edition),2024,25(1):90-95. doi: 10.3969/j.issn.1009-8984.2024.01.017
    [17]
    李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34.

    LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.
    [18]
    李飞,潘红光,魏绪强,等. 基于PDR算法与伪平面技术的井下人员定位方法研究[J]. 西安科技大学学报,2024,44(3):587-596.

    LI Fei,PAN Hongguang,WEI Xuqiang,et al. Research on positioning method of underground personnel in coal mines based on PDR algorithm and pseudo-plane technology[J]. Journal of Xi'an University of Science and Technology,2024,44(3):587-596.
    [19]
    牛春祥,姚善化. 基于Chan−PF的TDOA井下人员定位算法研究[J]. 无线互联科技,2024,21(1):103-106.

    NIU Chunxiang,YAO Shanhua. Research on TDOA underground personnel location algorithm based on Chan-PF[J]. Wireless Internet Science and Technology,2024,21(1):103-106.
    [20]
    朱劲磊,梁均海,付志超,等. 基于TDOA算法的基建现场施工人员定位研究[J]. 自动化仪表,2024,45(4):9-13.

    ZHU Jinglei,LIANG Junhai,FU Zhichao,et al. Research on localization of construction personnel at infrastructure site based on TDOA algorithm[J]. Process Automation Instrumentation,2024,45(4):9-13.
    [21]
    罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统[J]. 微型电脑应用,2024,40(3):102-107,111. doi: 10.3969/j.issn.1007-757X.2024.03.027

    LUO Shanshan,HE Zejia. Substation personnel llocation tracking system based on particle filter taylor algorithm[J]. Microcomputer Applications,2024,40(3):102-107,111. doi: 10.3969/j.issn.1007-757X.2024.03.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (76) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return