Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LI Baolin, FENG Jiaqi, WANG Enyuan, et al. Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning[J]. Journal of Mine Automation,2024,50(9):144-152.  doi: 10.13272/j.issn.1671-251x.2024070019
Citation: LI Baolin, FENG Jiaqi, WANG Enyuan, et al. Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning[J]. Journal of Mine Automation,2024,50(9):144-152.  doi: 10.13272/j.issn.1671-251x.2024070019

Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning

doi: 10.13272/j.issn.1671-251x.2024070019
  • Received Date: 2024-07-06
  • Rev Recd Date: 2024-09-15
  • Available Online: 2024-08-30
  • Electromagnetic radiation (EMR) has proven to be an effective monitoring technology for coal rock dynamic disasters, including underground rock burst and coal and gas outbursts. However, the intricate generation mechanisms of electromagnetic signal, coupled with interference from underground environments, can compromise the accuracy of disaster monitoring and early warning systems. Accurately identifying EMR signals induced by coal rock fractures (effective signals) is essential for the widespread application of this technology. This study conducted monitoring experiments on electromagnetic radiation during uniaxial compression of coal rock, analyzing the time-domain, frequency-domain, and fractal characteristics of both valid and interference signals. Machine learning algorithms, such as linear discriminant analysis, support vector machines, and ensemble learning methods, were utilized to develop intelligent identification models for effective and interference signals. A comparative analysis of the recognition accuracy across different models was performed. The results demonstrated that characteristics like fractal box dimension, average frequency, count, and peak frequency effectively distinguished between valid and interference signals, with single-feature recognition accuracy surpassing 70%. Both the feature set and the choice of machine learning algorithm significantly influenced the identification accuracy of valid and interference signals. The ensemble learning method, leveraging the complete feature set, achieved the highest identification accuracy of 94.5% for both signal types, fulfilling the requirements for EMR monitoring and early warning applications.

     

  • loading
  • [1]
    王恩元,何学秋,聂百胜,等. 电磁辐射法预测煤与瓦斯突出原理[J]. 中国矿业大学学报,2000,29(3):225-229. doi: 10.3321/j.issn:1000-1964.2000.03.001

    WANG Enyuan,HE Xueqiu,NIE Baisheng,et al. Principle of predicting coal and gas outburst using electromagnetic emission[J]. Journal of China University of Mining & Technology,2000,29(3):225-229. doi: 10.3321/j.issn:1000-1964.2000.03.001
    [2]
    李红平,李鹏鹏,张强,等. 煤岩双剪摩擦滑动声电响应实验研究[J]. 煤矿安全,2023,54(3):169-176.

    LI Hongping,LI Pengpeng,ZHANG Qiang,et al. Experimental study on acoustic and electrical response of double shear friction sliding of coal and rock[J]. Safety in Coal Mines,2023,54(3):169-176.
    [3]
    宋大钊,童永军,邱黎明,等. 花岗岩劈裂破坏电磁−震动有效信号重构与混沌特征[J]. 煤炭学报,2024,49(3):1375-1387.

    SONG Dazhao,TONG Yongjun,QIU Liming,et al. Effective signal reconstruction and chaotic characteristics of electro-seismic signal of granite splitting failure[J]. Journal of China Coal Society,2024,49(3):1375-1387.
    [4]
    金佩剑,王恩元,宋大钊,等. 单轴循环加载煤岩电磁辐射规律实验研究[J]. 煤矿安全,2013,44(5):46-48.

    JIN Peijian,WANG Enyuan,SONG Dazhao,et al. Experimental study on coal rock electromagnetic radiation laws under uniaxial cyclic loading[J]. Safety in Coal Mines,2013,44(5):46-48.
    [5]
    艾迪昊,李成武,赵越超,等. 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学,2020,41(6):2043-2051.

    AI Dihao,LI Chengwu,ZHAO Yuechao,et al. Investigation on micro-seismic,electromagnetic radiation and crack propagation characteristics of coal under static loading[J]. Rock and Soil Mechanics,2020,41(6):2043-2051.
    [6]
    王恩元,刘晓斐,何学秋,等. 煤岩动力灾害声电协同监测技术及预警应用[J]. 中国矿业大学学报,2018,47(5):942-948.

    WANG Enyuan,LIU Xiaofei,HE Xueqiu,et al. Acoustic emission and electromagnetic radiation synchronized monitoring technology and early-warning application for coal and rock dynamic disaster[J]. Journal of China University of Mining & Technology,2018,47(5):942-948.
    [7]
    何学秋,孙晓磊,殷山,等. 岩石破坏过程磁场效应实验研究及其对地震预报的意义[J]. 地球物理学报,2023,66(11):4609-4624. doi: 10.6038/cjg2022Q0732

    HE Xueqiu,SUN Xiaolei,YIN Shan,et al. Experimental research on magnetic field variation in rock failure process and its significance for earthquake prediction[J]. Chinese Journal of Geophysics,2023,66(11):4609-4624. doi: 10.6038/cjg2022Q0732
    [8]
    RABINOVITCH A,BAHAT D,FRID V. Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression,drilling and blasting[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(1):125-129. doi: 10.1016/S1365-1609(02)00012-6
    [9]
    ZHU Chenwei,NIE Baisheng. Spectrum and energy distribution characteristic of electromagnetic emission signals during fracture of coal[J]. Procedia Engineering,2011,26:1447-1455. doi: 10.1016/j.proeng.2011.11.2322
    [10]
    QIU Liming,LI Zhonghui,WANG Enyuan,et al. Characteristics and precursor information of electromagnetic signals of mining-induced coal and gas outburst[J]. Journal of Loss Prevention in the Process Industries,2018,54:206-215. doi: 10.1016/j.jlp.2018.04.004
    [11]
    LI Baolin,LI Zhonghui,WANG Enyuan,et al. Discrimination of different AE and EMR signals during excavation of coal roadway based on wavelet transform[J]. Minerals,2022,12(1). DOI: 10.3390/min120100637
    [12]
    姚精明,董文山,闫永业,等. 受载煤岩体电磁辐射动态多重分形特征[J]. 煤炭学报,2016,41(6):1429-1433.

    YAO Jingming,DONG Wenshan,YAN Yongye,et al. Multi-fractal characteristics of electromagnetic radiation with loaded coal[J]. Journal of China Coal Society,2016,41(6):1429-1433.
    [13]
    胡少斌,王恩元,李忠辉,等. 受载煤体电磁辐射动态非线性特征[J]. 中国矿业大学学报,2014,43(3):380-387.

    HU Shaobin,WANG Enyuan,LI Zhonghui,et al. Nonlinear dynamic characteristics of electromagnetic radiation during loading coal[J]. Journal of China University of Mining & Technology,2014,43(3):380-387.
    [14]
    赵洪宝,刘瑞,刘一洪,等. 基于深度学习方法的矿山微震信号分类识别研究[J]. 矿业科学学报,2022,7(2):166-174.

    ZHAO Hongbao,LIU Rui,LIU Yihong,et al. Research on classification and identification of mine microseismic signals based on deep learning method[J]. Journal of Mining Science and Technology,2022,7(2):166-174.
    [15]
    LI Baolin,LI Nan,WANG Enyuan,et al. Discriminant model of coal mining microseismic and blasting signals based on waveform characteristics[J]. Shock and Vibration,2017(8):113-125.
    [16]
    尚雪义,李夕兵,彭康,等. 基于EMD−SVD的矿山微震与爆破信号特征提取及分类方法[J]. 岩土工程学报,2016,38(10):1849-1858. doi: 10.11779/CJGE201610014

    SHANG Xueyi,LI Xibing,PENG Kang,et al. Feature extraction and classification of mine microseism and blast based on EMD-SVD[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1849-1858. doi: 10.11779/CJGE201610014
    [17]
    董陇军,张义涵,孙道元,等. 花岗岩破裂的声发射阶段特征及裂纹不稳定扩展状态识别[J]. 岩石力学与工程学报,2022,41(1):120-131.

    DONG Longjun,ZHANG Yihan,SUN Daoyuan,et al. Stage characteristics of acoustic emission and identification of unstable crack state for granite fractures[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):120-131.
    [18]
    曾鹏,纪洪广,孙利辉,等. 不同围压下岩石声发射不可逆性及其主破裂前特征信息试验研究[J]. 岩石力学与工程学报,2016,35(7):1333-1340.

    ZENG Peng,JI Hongguang,SUN Lihui,et al. Experimental study of characteristics of irreversibility and fracture precursors of acoustic emission in rock under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1333-1340.
    [19]
    邱黎明. 煤巷掘进突出危险性的声电瓦斯监测预警研究[D]. 徐州:中国矿业大学,2018.

    QIU Liming. Study on acoustic-electrical gas monitoring and early warning of outburst danger in coal roadway excavation[D]. Xuzhou:China University of Mining and Technology,2018.
    [20]
    赵聪聪,唐绍辉,覃敏,等. 矿震震源时空分布的分形特性与活动性预测——以新疆阿舍勒铜矿为例[J]. 岩石力学与工程学报,2019,38(增刊1):3036-3044.

    ZHAO Congcong,TANG Shaohui,QIN Min,et al. Fractal characteristics of spatiotemporal distribution and activity prediction based on mine earthquake—taking the Ashele copper mine in Xinjiang as an example[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):3036-3044.
    [21]
    钟明寿,龙源,谢全民,等. 基于分形盒维数和多重分形的爆破地震波信号分析[J]. 振动与冲击,2010,29(1):7-11,233. doi: 10.3969/j.issn.1000-3835.2010.01.002

    ZHONG Mingshou,LONG Yuan,XIE Quanmin,et al. Signal analysis for blasting seismic wave based on fractal box-dimension and multi-fractal[J]. Journal of Vibration and Shock,2010,29(1):7-11,233. doi: 10.3969/j.issn.1000-3835.2010.01.002
    [22]
    于冰冰,李清,赵桐德,等. 基于SSA−SVM的巷道顶板空顶沉降量预测模型[J]. 煤炭学报,2024,49(增刊1):57-71.

    YU Bingbing,LI Qing,ZHAO Tongde,et al. Prediction model of empty roof settlement of roadway roof based on SSA-SVM[J]. Journal of China Coal Society,2024,49(S1):57-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (75) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return