Citation: | HONG Yan, WANG Lei, SU Jingming, et al. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation,2024,50(6):61-69. doi: 10.13272/j.issn.1671-251x.2024050006 |
[1] |
中矿(北京)煤炭产业景气指数研究课题组,郭建利. 2023-2024年中国煤炭产业经济形势研究报告[J]. 中国煤炭,2024,50(3):12-20.
China Mining (Beijing) Coal Industry Prosperity Index Research,GUO Jianli. Research report on the economic situation of China's coal industry from 2023 to 2024[J]. China Coal,2024,50(3):12-20.
|
[2] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
|
[3] |
LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multiBox detector[C]. The 14th European Conference on Computer Vision,Amsterdam,2016:21-37.
|
[4] |
LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection [C]. IEEE International Conference on Computer Vision,Venice,2017:2999-3007.
|
[5] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[6] |
HAO Zhenbang,LIN Lili,POST CHRISTOPHER J,et al. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,178:112-123. doi: 10.1016/j.isprsjprs.2021.06.003
|
[7] |
刘富强,钱建生,王新红,等. 基于图像处理与识别技术的煤矿矸石自动分选[J]. 煤炭学报,2000,25(5):534-537. doi: 10.3321/j.issn:0253-9993.2000.05.020
LIU Fuqiang,QIAN Jiansheng,WANG Xinhong,et al. Automatic separation of waste rock in coal mine based on image procession and recognition[J]. Journal of China Coal Society,2000,25(5):534-537. doi: 10.3321/j.issn:0253-9993.2000.05.020
|
[8] |
WANG Yuanbin,WANG Yujing,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2020:1-10.
|
[9] |
任国强,韩洪勇,李成江,等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.
REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
|
[10] |
XIE Yehui,YU Sun,HUANG Ziyang. Foreign matter detection of coal conveying belt based on machine vision[C]. The 2nd International Conference on Computer Science and Management Technology,Shanghai,2021:293-296.
|
[11] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[12] |
MAO Qinghua,LI Shikun,HU Xin,et al. Coal mine belt conveyor foreign objects recognition method of improved YOLOv5 algorithm with defogging and deblurring[J]. Energies,2022,15(24). DOI:10.3390/ en15249504.
|
[13] |
张旭. 带式输送机异物检测系统关键技术研究[J]. 徐州:中国矿业大学,2023.
ZHANG Xu. Research on key technology of belt conveyor foreign body detection system[J]. Xuzhou:China University of Mining and Technology,2023.
|
[14] |
LIU Jiehui,QIAO Hongchao,LIANG Lijie,et al. Improved lightweight YOLOv4 foreign object detection method for conveyor belts combined with CBAM[J]. Applied Sciences,2023,13(14). DOI: 10.3390/app13148465.
|
[15] |
高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J/OL]. 煤炭科学技术,1-11[2024-03-28]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.
GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and Transformer[J/OL]. Coal Science and Technology,1-11[2024-03-28]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.
|
[16] |
YANG Dengjie,MIAO Changyun,LIU Yi,et al. Improved foreign object tracking algorithm in coal for belt conveyor gangue selection robot with YOLOv7 and DeepSORT[J]. Measurement,2024,228. DOI: 10.1016/j.measurement.2024.114180.
|
[17] |
HU Jie,SHEN Li,AIBANIE S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372
|
[18] |
FAWZI A,SAMULOWITZ H,TURAGA D,et al. Adaptive data augmentation for image classification[C]. IEEE International Conference on Image Processing,Phoenix,2016:3688-3692.
|
[19] |
VENKATARAMANAN S,KIJAK E,AMSALEG L,et al. AlignMixup:improving representations by interpolating aligned features[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:19152-19161.
|
[20] |
WANG Niannian,ZHANG Zexi,HU Haobang,et al. Underground defects detection based on GPR by fusing simple linear iterative clustering phash (SLIC-Phash) and convolutional block attention module (CBAM)-YOLOv8[J]. IEEE Access,2024,12:25888-25905. doi: 10.1109/ACCESS.2024.3365959
|
[21] |
PARK J,WOO S,LEE J-Y,et al. A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision,2020,128(4):783-798. doi: 10.1007/s11263-019-01283-0
|
[22] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
|
[23] |
CHEN Jierun,KAO S,HE Hao,et al. Run,don't walk:chasing higher FLOPS for faster neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:12021-12031.
|
[24] |
HUANG Kaifeng,LI Shiyan,CAI Feng,et al. Detection of large foreign objects on coal mine belt conveyor based on improved[J]. Processes,2023,11(8). DOI: 10.3390/pr11082469.
|
[25] |
SELVARAJU R R,COGSWELL M,DAS A,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision,2020,128(2):336-359. doi: 10.1007/s11263-019-01228-7
|