Citation: | WANG Junfu, XUE Xiaojie, YANG Yi. Laser point cloud segmentation algorithm for hydraulic support based on neighborhood feature encoding and optimization[J]. Journal of Mine Automation,2024,50(7):98-106, 178. doi: 10.13272/j.issn.1671-251x.2024040052 |
[1] |
王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.
WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice of coal mine intellectualization (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
|
[2] |
GUO Jun,HUANG Wenbo,FENG Guorui,et al. Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model[J]. International Journal of Mining Science and Technology,2024,34(4):491-505. doi: 10.1016/j.ijmst.2024.04.011
|
[3] |
高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.
GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
|
[4] |
王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.
WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
|
[5] |
王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202. doi: 10.13225/j.cnki.jccs.2023.1355
WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202. doi: 10.13225/j.cnki.jccs.2023.1355
|
[6] |
李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7,103.
LI Jian,REN Huaiwei,GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7,103.
|
[7] |
王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.
WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
|
[8] |
XI Xiaohuan,WAN Yiping,WANG Cheng. Building boundaries extraction from points cloud using an image edge detection method[C]. IEEE International Geoscience and Remote Sensing Symposium,Beijing,2016:1270-1273.
|
[9] |
SCHNABEL R,WAHL R,KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum,2007,26(2):214-226. doi: 10.1111/j.1467-8659.2007.01016.x
|
[10] |
ZHOU Dingfu,FANG Jin,SONG Xibin,et al. Joint 3D instance segmentation and object detection for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1836-1846.
|
[11] |
XU Yongyang,TANG Wei,ZENG Ziyin,et al. NeiEA-NET:semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation[J]. International Journal of Applied Earth Observation and Geoinformation,2023,119. DOI: 10.1016/j.jag.2023.103285.
|
[12] |
MATURANA D,SCHERER S. VoxNet:a 3D convolutional neural network for real-time object recognition[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Hamburg,2015:922-928.
|
[13] |
LE T,DUAN Ye. PointGrid:a deep network for 3D shape understanding[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:9204-9214.
|
[14] |
SU Hang,MAJI S,KALOGERAKIS E,et al. Multi-view convolutional neural networks for 3D shape recognition[C]. IEEE International Conference on Computer Vision,Santiago,2015:945-953.
|
[15] |
MILIOTO A,VIZZO I,BEHLEY J,et al. RangeNet:fast and accurate LiDAR semantic segmentation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Macau,2019:4213-4220.
|
[16] |
CHARLES R Q,HAO Su,MO Kaichun,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:77-85.
|
[17] |
QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems,Long Beach,2017:5105-5114.
|
[18] |
HU Qingyong,YANG Bo,XIE Linhai,et al. RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11105-11114.
|
[19] |
FAN Siqi,DONG Qiulei,ZHU Fenghua,et al. SCF-Net:learning spatial contextual features for large-scale point cloud segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:14499-14508.
|
[20] |
ZENG Ziyin,XU Yongyang,XIE Zhong,et al. LEARD-Net:semantic segmentation for large-scale point cloud scene[J]. International Journal of Applied Earth Observation and Geoinformation,2022,112. DOI: 10.1016/j.jag.2022.102953.
|
[21] |
QIAN Wei,XING Weiwei,FEI Shumin. H∞ state estimation for neural networks with general activation function and mixed time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(9):3909-3918. doi: 10.1109/TNNLS.2020.3016120
|