Citation: | ZHU Hongbo, HUA Rong. Path planning method for coal mine inspection robot[J]. Journal of Mine Automation,2024,50(7):107-114. doi: 10.13272/j.issn.1671-251x.2024040033 |
[1] |
蔡治华,周东旭,赵明辉. 煤矿巡检机器人控制系统设计[J]. 工矿自动化,2022,48(5):112-117.
CAI Zhihua,ZHOU Dongxu,ZHAO Minghui. Design of coal mine inspection robot control system[J]. Journal of Mine Automation,2022,48(5):112-117.
|
[2] |
姜媛媛,丰雪艳. 基于改进A*算法的煤矿救援机器人路径规划[J]. 工矿自动化,2023,49(8):53-59.
JIANG Yuanyuan,FENG Xueyan. Path planning of coal mine rescue robot based on improved A* algorithm[J]. Journal of Mine Automation,2023,49(8):53-59.
|
[3] |
李薪颖,单梁,常路,等. 复杂环境下基于多目标粒子群的DWA路径规划算法[J]. 国防科技大学学报,2022,44(4):52-59. doi: 10.11887/j.cn.202204006
LI Xinying,SHAN Liang,CHANG Lu,et al. DWA path planning algorithm based on multi-objective particle swarm optimization in complex environment[J]. Journal of National University of Defense Technology,2022,44(4):52-59. doi: 10.11887/j.cn.202204006
|
[4] |
ZHANG Yinyan,LI Shuai,GUO Hongliang. A type of biased consen sus-based distributed neural network for path planning[J]. Nonlinear Dynamics,2017,89:1803-1815.
|
[5] |
李波,杨志鹏,贾卓然,等. 一种无监督学习型神经网络的无人机全区域侦察路径规划[J]. 西北工业大学学报,2021,39(1):77-84. doi: 10.3969/j.issn.1000-2758.2021.01.010
LI Bo,YANG Zhipeng,JIA Zhuoran,et al. An unsupervised learning neural network for planning UAV full-area reconnaissance path[J]. Journal of Northwestern Polytechnical University,2021,39(1):77-84. doi: 10.3969/j.issn.1000-2758.2021.01.010
|
[6] |
OROZCO-ROSAS U,OSCAR M,SEPULVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing,2019,77:236-251. doi: 10.1016/j.asoc.2019.01.036
|
[7] |
翟丽,张雪莹,张闲,等. 基于势场法的无人车局部动态避障路径规划算法[J]. 北京理工大学学报,2022,42(7):696-705.
ZHAI Li,ZHANG Xueying,ZHANG Xian,et al. Local dynamic obstacle avoidance path planning algorithm for unmanned vehicles based on potential field method[J]. Transactions of Beijing Institute of Technology,2022,42(7):696-705.
|
[8] |
叶颖诗,魏福义,蔡贤资. 基于并行计算的快速Dijkstra算法研究[J]. 计算机工程与应用,2020,56(6):58-65. doi: 10.3778/j.issn.1002-8331.1903-0119
YE Yingshi,WEI Fuyi,CAI Xianzi. Research on fast Dijkstra algorithm based on parallel computing[J]. Computer Engineering and Applications,2020,56(6):58-65. doi: 10.3778/j.issn.1002-8331.1903-0119
|
[9] |
巩慧,倪翠,王朋,等. 基于Dijkstra算法的平滑路径规划方法[J]. 北京航空航天大学学报,2024,50(2):535-541.
GONG Hui,NI Cui,WANG Peng,et al. A smooth path planning method based on Dijkstra algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):535-541.
|
[10] |
刘新宇,谭力铭,杨春曦,等. 未知环境下的蚁群−聚类自适应动态路径规划[J]. 计算机科学与探索,2019,13(5):846-857. doi: 10.3778/j.issn.1673-9418.1811015
LIU Xinyu,TAN Liming,YANG Chunxi,et al. Self-adjustable dynamic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology,2019,13(5):846-857. doi: 10.3778/j.issn.1673-9418.1811015
|
[11] |
敖邦乾,杨莎,叶振环. 改进蚁群算法水面无人艇平滑路径规划[J]. 控制理论与应用,2021,38(7):1006-1014. doi: 10.7641/CTA.2021.00735
AO Bangqian,YANG Sha,YE Zhenhuan. Improved ant colony algorithm for unmanned surface vehicle smooth path planning[J]. Control Theory & Applications,2021,38(7):1006-1014. doi: 10.7641/CTA.2021.00735
|
[12] |
ZHANG Haojian,WANG Yunkuan,ZHENG Jun,et al. Path planning of industrial robot based on improved RRT algorithm in complex environments[J]. IEEE Access,2018,6. DOI: 10.1109/access.2018.2871222.
|
[13] |
LI Binghui,CHEN Badong. An adaptive rapidly-exploring random tree[J]. IEEE/CAA Journal of Automatica Sinica,2021,9(2):283-294.
|
[14] |
NGUYEN M K,JAILLET L,REDON S. ART-RRT:As-rigid-as-possible exploration of ligand unbinding pathways[J]. Journal of Computational Chemistry Organic Inorganic Physical Biological,2018,39(11):665-678.
|
[15] |
BRY A,ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]. IEEE International Conference on Robotics and Automation,Shanghai,2011:723-730.
|
[16] |
QURESHI A H,MUMTAZ S,FAHAD L K,et al. Adaptive potential guided directional-RRT[C]. IEEE International Conference on Robotics & Biomimetics,Shenzhen,2014:1887-1892.
|
[17] |
刘成菊,韩俊强,安康. 基于改进RRT算法的RoboCup机器人动态路径规划[J]. 机器人,2017,39(1):8-15.
LIU Chengju,HAN Junqiang,AN Kang. Dynamic path planning based on an improved RRT algorithm for RoboCup robot[J]. Robot,2017,39(1):8-15.
|
[18] |
司徒华杰,雷海波,庄春刚. 动态环境下基于人工势场引导的RRT路径规划算法[J]. 计算机应用研究,2021,38(3):714-717,724.
SITU Huajie,LEI Haibo,ZHUANG Chungang. Artificial potential field based RRT algorithm for path planning in dynamic environment[J]. Application Research of Computers,2021,38(3):714-717,724.
|
[19] |
李伟东,李乐. 基于改进RRT算法的无人车路径规划[J]. 计算机测量与控制,2023,31(1):160-166.
LI Weidong,LI Le. Path planning of unmanned vehicle based on improved RRT algorithm[J]. Computer Measurement & Control,2023,31(1):160-166.
|
[20] |
陈侠,刘奎武,毛海亮. 基于APF−RRT算法的无人机航迹规划[J]. 电光与控制,2022,29(5):17-22. doi: 10.3969/j.issn.1671-637X.2022.05.004
CHEN Xia,LIU Kuiwu,MAO Hailiang. UAV path planning based on APF-RRT algorithm[J]. Electronics Optics & Control,2022,29(5):17-22. doi: 10.3969/j.issn.1671-637X.2022.05.004
|
[21] |
王道威,朱明富,刘慧. 动态步长的RRT路径规划算法[J]. 计算机技术与发展,2016,26(3):105-107,112.
WANG Daowei,ZHU Mingfu,LIU Hui. Rapidly-exploring random tree algorithm based on dynamic step[J]. Computer Technology and Development,2016,26(3):105-107,112.
|