Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
JI Xianliang, ZHANG Wenjie, WANG Yuqiang, et al. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation,2024,50(5):75-83.  doi: 10.13272/j.issn.1671-251x.2024030028
Citation: JI Xianliang, ZHANG Wenjie, WANG Yuqiang, et al. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation,2024,50(5):75-83.  doi: 10.13272/j.issn.1671-251x.2024030028

Research on high-precision coal flow detection of belt conveyors based on machine vision

doi: 10.13272/j.issn.1671-251x.2024030028
  • Received Date: 2024-03-12
  • Rev Recd Date: 2024-05-26
  • Available Online: 2024-06-13
  • In response to the problems of missing image details and poor fitting effect in multiple fractures or areas with large fracture spacing in existing machine vision based coal flow detection methods for belt conveyors, a high-precision coal flow detection system for belt conveyors based on machine vision is proposed. It is based on the principle of direct beam oblique collection laser triangulation. The line laser emitter is arranged directly above the measurement position of the belt conveyor and vertically irradiates the coal pile. The coal pile moves uniformly with the belt conveyor, and a camera at an oblique angle is used to capture real-time images of the surface of the coal pile containing laser stripes. The method calibrates the coal flow detection system, including camera internal parameter calibration and laser plane calibration, to obtain the height information of the coal pile. The processing of laser stripe images on coal flow cross-sections is carried out. The gray center of gravity method and regional skeleton method are compared and analyzed from multiple perspectives such as extraction precision and algorithm real-time performance. Based on the comparison results, the regional skeleton method is selected to extract the center of laser stripes. Aiming at the problem of poor fitting effect of laser stripe fracture repair using image dilation operation, the least squares method is proposed as the laser stripe fracture repair algorithm. Compared with closed operations, the least squares method has better smoothing effect and higher precision in fitting processing. The method establishes a coal flow cross-sectional area calculation model. By calculating the cross-sectional area of the coal pile at each frame, the coal flow volume at different belt speeds can be obtained. The experimental results show that when the belt speeds are 0.25, 0.5, and 1 m/s respectively, the detection system errors are relatively small, with maximum errors of 2.78%, 3.61%, and 3.89%. It verifies that the coal flow detection system has high accuracy.

     

  • loading
  • [1]
    李晓丽,王庆福. 基于GA−BP神经网络的带式输送机故障监测系统研究[J]. 煤炭技术,2021,40(12):222-224.

    LI Xiaoli,WANG Qingfu. Research on fault monitoring system of belt conveyor based on GA-BP neural network[J]. Coal Technology,2021,40(12):222-224.
    [2]
    宋钦一. 基于故障树和贝叶斯网络的带式输送机故障诊断[J]. 矿山机械,2022,50(9):55-58. doi: 10.3969/j.issn.1001-3954.2022.09.013

    SONG Qinyi. Fault diagnosis on belt conveyor based on fault tree and Bayesian network[J]. Mining & Processing Equipment,2022,50(9):55-58. doi: 10.3969/j.issn.1001-3954.2022.09.013
    [3]
    GAN Hong,CHEN Kun,ZHONG Xinghong. Static analysis on the measurement system of an electronic belt scale[J]. Applied Mechanics and Materials,2013,345:525-529. doi: 10.4028/www.scientific.net/AMM.345.525
    [4]
    赵学军,杨征,闫雪. 基于语义分割的带式输送机煤料运输区域检测算法[J]. 计算机应用与软件,2024,41(2):56-61,99. doi: 10.3969/j.issn.1000-386x.2024.02.008

    ZHAO Xuejun,YANG Zheng,YAN Xue. Coal transportation area detection algorithm of belt conveyor based on semantic segmentation[J]. Computer Applications and Software,2024,41(2):56-61,99. doi: 10.3969/j.issn.1000-386x.2024.02.008
    [5]
    张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计[J]. 煤炭工程,2024,56(1):220-224.

    ZHANG Wenke,GUO Yu,ZHAO Hui. Self-adaptive speed control system of coal mine conveying belt based on image recognition[J]. Coal Engineering,2024,56(1):220-224.
    [6]
    汪心悦,乔铁柱,庞宇松,等. 基于TOF深度图像修复的输送带煤流检测方法[J]. 工矿自动化,2022,48(1):40-44,63.

    WANG Xinyue,QIAO Tiezhu,PANG Yusong,et al. Coal flow detection method for conveyor belt based on TOF depth image restoration[J]. Industry and Mine Automation,2022,48(1):40-44,63.
    [7]
    周富林,黄靖. AI边缘计算在工业视觉识别系统中的应用[J]. 现代传输,2022(6):54-56. doi: 10.3969/j.issn.1673-5137.2022.06.009

    ZHOU Fulin,HUANG Jing. Application of AI edge computing in industrial visual recognition system[J]. Modern Transmission,2022(6):54-56. doi: 10.3969/j.issn.1673-5137.2022.06.009
    [8]
    李纪栋,蒲绍宁,翟超,等. 基于视频识别的带式输送机煤量检测与自动调速系统[J]. 煤炭科学技术,2017,45(8):212-216.

    LI Jidong,PU Shaoning,ZHAI Chao,et al. Coal quantity detection and automatic speed regulation system of belt conveyor based on video identification[J]. Coal Science and Technology,2017,45(8):212-216.
    [9]
    杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174.

    YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174.
    [10]
    曾飞,吴青,初秀民,等. 带式输送机物料瞬时流量激光测量方法[J]. 湖南大学学报(自然科学版),2015,42(2):40-47.

    ZENG Fei,WU Qing,CHU Xiumin,et al. Measurement of material instantaneous flow on belt conveyors based on laser scanning[J]. Journal of Hunan University(Natural Sciences),2015,42(2):40-47.
    [11]
    胡而已. 融合激光扫描与机器视觉的煤流量测量研究[J]. 煤炭工程,2021,53(11):146-151.

    HU Eryi. Coal flow measurement based on laser scanning and machine vision[J]. Coal Engineering,2021,53(11):146-151.
    [12]
    李淑军,田昌勇,周传扬. 基于结构光的激光自动焊接跟踪研究[J]. 应用光学,2023,44(6):1280-1285. doi: 10.5768/JAO202344.0610016

    LI Shujun,TIAN Changyong,ZHOU Chuanyang. Research on automatic laser welding tracking based on structured light[J]. Journal of Applied Optics,2023,44(6):1280-1285. doi: 10.5768/JAO202344.0610016
    [13]
    朱铮涛,裴炜冬,李渊,等. 基于远心镜头的激光三角测距系统研究与实现[J]. 激光与光电子学进展,2018,55(3):191-196.

    ZHU Zhengtao,PEI Weidong,LI Yuan,et al. Research and implementation of laser triangulation system based on telecentric lens[J]. Laser & Optoelectronics Progress,2018,55(3):191-196.
    [14]
    祝磊,韩自营,阮宇静,等. 基于机器视觉的轮胎胎面检测系统设计与实现[J]. 计算机工程与设计,2018,39(6):1782-1787.

    ZHU Lei,HAN Ziying,RUAN Yujing,et al. Design and implementation of tire tread detection system based on machine vision[J]. Computer Engineering and Design,2018,39(6):1782-1787.
    [15]
    郑彬,罗山,蒋银成. 基于RGB图像处理的轮胎胎面缺陷检测方法研究[J]. 制造业自动化,2023,45(6):35-38,49. doi: 10.3969/j.issn.1009-0134.2023.06.007

    ZHENG Bin,LUO Shan,JINAG Yincheng. Research on tire tread defect detection method based on RGB image processing[J]. Manufacturing Automation,2023,45(6):35-38,49. doi: 10.3969/j.issn.1009-0134.2023.06.007
    [16]
    唐义杰,胡超,张倚玮,等. 强椒盐噪声下的模糊边缘自适应中值滤波算法[J]. 电子制作,2022,30(16):89-91. doi: 10.3969/j.issn.1006-5059.2022.16.027

    TANG Yijie,HU Chao,ZHANG Yiwei,et al. Fuzzy edge adaptive median filtering algorithm under strong salt and pepper noise[J]. Practical Electronics,2022,30(16):89-91. doi: 10.3969/j.issn.1006-5059.2022.16.027
    [17]
    刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展 [J/OL]. 中国电机工程学报:1-27[2024-04-12]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240226.0957.002.html.

    LIU Chuanyang,WU Yiquan. Research progress on power equipment identification and heating fault diagnosis methods based on infrared images[J/OL]. Proceedings of the CSEE:1-27[2024-04-12]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240226.0957.002.html.
    [18]
    宋立彬,张淑艳. 基于机器视觉的煤流量快速检测方法[J]. 煤炭技术,2023,42(9):241-243.

    SONG Libin,ZHANG Shuyan. Rapid detection method of coal flow based on machine vision[J]. Coal Technology,2023,42(9):241-243.
    [19]
    吴玉波,陈迪来,杨超,等. 基于Steger算法的多线结构光中心提取[J]. 应用激光,2023,43(10):188-195.

    WU Yubo,CHEN Dilai,YANG Chao,et al. Multi-line structured light center extraction based on improved steger algorithm[J]. Applied Laser,2023,43(10):188-195.
    [20]
    陈哲,王生怀,钟明. 3D线激光相机的激光条纹中心提取方法[J]. 工具技术,2023,57(10):155-160. doi: 10.3969/j.issn.1000-7008.2023.10.032

    CHEN Zhe,WANG Shenghuai,ZHONG Ming. Laser stripe center extraction method for 3D line laser cameras[J]. Tool Engineering,2023,57(10):155-160. doi: 10.3969/j.issn.1000-7008.2023.10.032
    [21]
    胡石. 基于激光扫描的工业机器人焊接焊缝跟踪方法[J]. 重庆科技学院学报(自然科学版),2023,25(5):69-75. doi: 10.3969/j.issn.1673-1980.2023.05.013

    HU Shi. Study on welding seam tracking method of industrial robot based on laser scanning[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition),2023,25(5):69-75. doi: 10.3969/j.issn.1673-1980.2023.05.013
    [22]
    王浩,赵小辉,徐龙哲,等. 结构光视觉辅助焊接的轨迹识别与控制技术[J]. 焊接学报,2023,44(6):50-57,132. doi: 10.12073/j.hjxb.20220715002

    WANG Hao,ZHAO Xiaohui,XU Longzhe,et al. Research on trajectory recognition and control technology of structured light vision-assisted welding[J]. Transactions of the China Welding Institution,2023,44(6):50-57,132. doi: 10.12073/j.hjxb.20220715002
    [23]
    南诺,侯作勋,曹东晶,等. 一种基于图像形态学的深空图像模糊复原方法[J]. 航天返回与遥感,2023,44(2):101-108. doi: 10.3969/j.issn.1009-8518.2023.02.011

    NAN Nuo,HOU Zuoxun,CAO Dongjing,et al. Deep-air image blur restoration method based on image morphology[J]. Spacecraft Recovery & Remote Sensing,2023,44(2):101-108. doi: 10.3969/j.issn.1009-8518.2023.02.011
    [24]
    田江云,温欣,刘旭东,等. 基于改进最小二乘法的椭圆形玻璃幕墙缺陷多传感器融合检测技术[J]. 无损检测,2024,45(1):28-32.

    TIAN Jiangyun,WEN Xin,LIU Xudong,et al. Multi-sensor fusion detection technology for elliptical glass curtain wall defects based on improved least squares method[J]. Nondestructive Testing,2024,45(1):28-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(6)

    Article Metrics

    Article views (135) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return