Citation: | XU Ciqiang, JIA Yunhong, TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation,2024,50(3):42-47, 141. doi: 10.13272/j.issn.1671-251x.2024030009 |
[1] |
葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(1):54-73.
GE Shirong,HU Eryi,LI Yunwang. New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society,2023,48(1):54-73.
|
[2] |
谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187-1197.
XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187-1197.
|
[3] |
王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J/OL]. 煤炭学报:1-23[2024-02-22]. https://doi.org/10.13225/j.cnki.jccs.2023.1355.
WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J/OL]. Journal of China Coal Society:1-23[2024-02-22]. https://doi.org/10.13225/j.cnki.jccs.2023.1355.
|
[4] |
詹召伟. 煤矿综采工作面智能化开采关键技术和发展方向[J]. 能源与节能,2023(1):82-86.
ZHAN Zhaowei. Key technologies and development direction of intelligent mining in fully mechanized mining face[J]. Energy and Energy Conservation,2023(1):82-86.
|
[5] |
葛世荣,张晞,薛光辉,等. 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学,2023,25(5):146-156. doi: 10.15302/J-SSCAE-2023.05.013
GE Shirong,ZHANG Xi,XUE Guanghui,et al. Development of intelligent technologies and machinery for coal mining in China's underground coal mines[J]. Strategic Study of CAE,2023,25(5):146-156. doi: 10.15302/J-SSCAE-2023.05.013
|
[6] |
崔卫秀,穆润青,解鸿章,等. 500 m超长工作面刮板智能输送技术研究[J/OL]. 煤炭科学技术:1-10[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230921.1538.002.html.
CUI Weixiu,MU Runqing,XIE Hongzhang,et al. Research on intelligent conveying technology of 500 m ultra-long face scraper[J/OL]. Coal Science and Technology:1-10[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230921.1538.002.html.
|
[7] |
苗长云,李佳. 基于机器视觉的带式输送机落料口堆煤检测[J]. 辽宁工程技术大学学报(自然科学版),2023,42(5):617-624.
MIAO Changyun,LI Jia. Machine vision-based coal pile detection at drop port of belt conveyor[J]. Journal of Liaoning Technical University(Natural Science),2023,42(5):617-624.
|
[8] |
程德强,寇旗旗,江鹤,等. 全矿井智能视频分析关键技术综述[J]. 工矿自动化,2023,49(11):1-21.
CHENG Deqiang,KOU Qiqi,JIANG He,et al. Overview of key technologies for mine-wide intelligent video analysis[J]. Journal of Mine Automation,2023,49(11):1-21.
|
[9] |
宋军强. OpenCV耦合机器视觉的背光板表面异物检测算法研究[J]. 组合机床与自动化加工技术,2015(11):83-87.
SONG Junqiang. The study on image objects location and compensation technology based on OpenCV and machine vision[J]. Modular Machine Tool & Automatic Manufacturing Technique,2015(11):83-87.
|
[10] |
刘孝军,王飞. 基于AI的煤矿视频智能分析技术[J]. 煤炭科学技术,2022,50(增刊2):260-264.
LIU Xiaojun,WANG Fei. Application of video intelligent analysis technology in coal mine based on computer vision[J]. Coal Science and Technology,2022,50(S2):260-264.
|
[11] |
曹现刚,李虎,王鹏,等. 基于跨模态注意力融合的煤炭异物检测方法[J]. 工矿自动化,2024,50(1):57-65.
CAO Xiangang,LI Hu,WANG Peng,et al. A coal foreign object detection method based on cross modal attention fusion[J]. Journal of Mine Automation,2024,50(1):57-65.
|
[12] |
高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J/OL]. 煤炭科学技术:1-11[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.
GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and transformer[J/OL]. Coal Science and Technology:1-11[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.
|
[13] |
张立亚. 基于生成对抗网络的带式输送机异物检测方法[J]. 工矿自动化,2023,49(11):53-59.
ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation,2023,49(11):53-59.
|
[14] |
王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.
WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
|
[15] |
李江涛,张康辉,沙特. 煤中异物识别的深度学习模型轻量化策略[J]. 煤炭工程,2023,55(增刊1):220-224.
LI Jiangtao,ZHANG Kanghui,SHA Te. Lightweight deep learning model compression strategy for coal foreign object recognition[J]. Coal Engineering,2023,55(S1):220-224.
|
[16] |
桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.
GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
|
[17] |
LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
|
[18] |
HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
|
[19] |
OUYANG Daliang,HE Su,ZHANG Guozhong,et al. Efficient multi-scale attention module with cross-spatial learning[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes Island,2023:1-5.
|
[20] |
YU Jiahui,JIANG Yuning,WANG Zhangyang,et al. UnitBox:an advanced object detection network[C]. The 24th ACM International Conference on Multimedia,2016:516-520. DOI: 10.1145/2964284.2967274.
|
[21] |
GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[EB/OL]. [2024-02-12]. https://arxiv.org/abs/2205.12740.
|
[22] |
YANG Wenjuan,ZHANG Xuhui,MA Bing,et al. An open dataset for intelligent recognition and classification of abnormal condition in longwall mining[J]. Scientific Data,2023,10. DOI: 10.1038/s41597-023-02322-9.
|