Citation: | XIONG Zengju, YAO Chenggui, ZHANG Dehua. A mine image denoising algorithm based on improved trimmed mean[J]. Journal of Mine Automation,2024,50(4):63-68. doi: 10.13272/j.issn.1671-251x.2024010063 |
[1] |
DHAS M M,SINGH N S. Image denoising using discrete wavelet transform and adaptive thresholding optimised with improved arithmetic optimisation algorithm and guided filter[J]. International Journal of Computational Intelligence Studies,2022,11(2):131-156. doi: 10.1504/IJCISTUDIES.2022.126898
|
[2] |
ZHU Yun,GONG Chengjian,LIU Shuwen,et al. Infrared object detection via patch-tensor model and image denoising based on weighted truncated Schatten-p norm minimization[J]. IET Image Processing,2023,17(6):1762-1774. doi: 10.1049/ipr2.12753
|
[3] |
WANG Yingmei,WANG Zhendong. Image denoising method based on variable exponential fractional-integer-order total variation and tight frame sparse regularization[J]. IET Image Processing,2021,15(1):101-114. doi: 10.1049/ipr2.12010
|
[4] |
DHILLON D,CHOUHAN R. Edge-preserving image denoising using noise-enhanced patch-based non-local means[J]. Multimedia Systems,2023,29(3):1025-1041. doi: 10.1007/s00530-022-01035-0
|
[5] |
REKHA H,SAMUNDISWARY P. Image denoising using fast non-local means filter and multi-thresholding with harmony search algorithm for WSN[J]. International Journal of Advanced Intelligence Paradigms,2023,24(1/2):92-109. doi: 10.1504/IJAIP.2023.128076
|
[6] |
WANG Qinglin,BAI Qing,LIU Yuting,et al. SNR enhancement for BOTDR with spatial-adaptive image denoising method[J]. Journal of Lightwave Technology:A Joint IEEE/OSA Publication,2023,41(8):2562-2571. doi: 10.1109/JLT.2022.3231973
|
[7] |
霍一,马晓轩. 卡尔曼滤波结合遗传算法的矿井图像去噪算法研究[J]. 计算机应用与软件,2022,39(2):220-227.
HUO Yi,MA Xiaoxuan. Mine image denoising algorithm based on Kalman filter and genetic algorithm[J]. Computer Applications and Software,2022,39(2):220-227.
|
[8] |
闫洪波,赵蓬勃,刘恩佐,等. 二维变分模态分解矿井监控视频图像去噪[J]. 计算机应用与软件,2023,40(6):211-215.
YAN Hongbo,ZHAO Pengbo,LIU Enzuo,et al. Two-dimensional variational mode decomposition for mine monitoring video image denoising[J]. Computer Applications and Software,2023,40(6):211-215.
|
[9] |
程德强,王雨晨,寇旗旗,等. 基于改进深度残差网络的矿井图像分类[J]. 计算机应用研究,2021,38(5):1576-1580.
CHENG Deqiang,WANG Yuchen,KOU Qiqi,et al. Classification of mine images based on improved deep residual network[J]. Application Research of Computers,2021,38(5):1576-1580.
|
[10] |
孙峰,李博,高紫俊,等. 一种基于Retinex理论矿井下图像增强算法[J]. 大连工业大学学报,2023,42(2):151-156.
SUN Feng,LI Bo,GAO Zijun,et al. A mine image enhancement algorithm based on Retinex theory[J]. Journal of Dalian Polytechnic University,2023,42(2):151-156.
|
[11] |
SINOVA B. On depth-based fuzzy trimmed means and a notion of depth specifically defined for fuzzy numbers[J]. Fuzzy Sets and Systems,2022,443:87-105. doi: 10.1016/j.fss.2021.09.008
|
[12] |
XU Yanlei,WANG Xindong,ZHAI Yuting,et al. Precise variable spraying system based on improved genetic proportional-integral-derivative control algorithm[J]. Transactions of the Institute of Measurement and Control,2021,43(14):3255-3266. doi: 10.1177/01423312211022446
|
[13] |
文小波. M估计下切尾均值和平尾均值的抽样分布[J]. 湖南文理学院学报(自然科学版),2020,32(1):4-8,94.
WEN Xiaobo. Sampling distribution of trimmed mean and winsorised mean of M estimator[J]. Journal of Hunan University of Arts and Science (Science and Technology),2020,32(1):4-8,94.
|
[14] |
BORISCH E A,FROEMMING A T,GRIMM R C,et al. Model-based image reconstruction with wavelet sparsity regularization for through-plane resolution restoration in T2-weighted spin-echo prostate MRI[J]. Magnetic Resonancein Medicine:Official Journal of the Society of Magnetic Resonance in Medicine,2023,89(1):454-468. doi: 10.1002/mrm.29447
|
[15] |
SHAH S A A,BAIS A,ALASHAIKH A,et al. Discrete wavelet transform based branched deep hybrid network for environmental noise classification[J]. Computational Intelligence,2023,39(3):478-498. doi: 10.1111/coin.12577
|
[16] |
WANG Juan. Application of wavelet transform image processing technology in financial stock analysis[J]. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology,2021,40(2):2017-2027.
|
[17] |
SINGH P,DIWAKAR M. Wavelet-based multi-focus image fusion using average method noise diffusion (AMND)[J]. Recent Advances in Computer Science and Communications,2021,14(8):2436-2448. doi: 10.2174/2666255813999200720163938
|
[18] |
WANG Siyuan,LYU Junjie,HE Zhuonan,et al. Denoising auto-encoding priors in undecimated wavelet domain for MR image reconstruction[J]. Neurocomputing,2021,437(4):325-338.
|
[19] |
JIANG Yanhua,LAN Guanglin,ZHANG Zhiqing. Ship engine detection based on wavelet neural network and FPGA image scanning[J]. Alexandria Engineering Journal,2021,60(5):4287-4297. doi: 10.1016/j.aej.2021.02.028
|
[20] |
VAIYAPURI T,ALASKAR H,SBAI Z,et al. GA-based multi-objective optimization technique for medical image denoising in wavelet domain[J]. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology,2021,41(1):1575-1588.
|
[21] |
SRIDHAR B. A wavelet based copyright marking on image under sub-bands stacking technique[J]. Latin American Applied Research,2021,51(1):71-75.
|
[22] |
SOLAK A,CEYLAN R,BOZKURT M A,et al. Adrenal tumor segmentation on U-Net:a study about effect of different parameters in deep learning[J]. Vietnam Journal of Computer Science,2024,11(1):111-135. doi: 10.1142/S2196888823500161
|
[23] |
ZHAO Yan,GUO Ming,CHEN Xiangyong,et al. Attention-based CNN fusion model for emotion recognition during walking using discrete wavelet transform on EEG and inertial signals[J]. Big Data Mining and Analytics,2024,7(1):188-204. doi: 10.26599/BDMA.2023.9020018
|
[24] |
LIU Meng,MENG Kexin,XING Ruyi,et al. Haar wavelet transform and variational iteration method for fractional option pricing models[J]. Mathematical Methods in the Applied Sciences,2023,46(7):8408-8417. doi: 10.1002/mma.8343
|
[25] |
CHHA H,PENG Yongbo. Adaptive linear quadratic regulator for optimal structural control based on wavelet transform and genetic algorithm[J]. Engineering Computations:International Journal for Computer-Aided Engineering and Software,2023,40(4):1016-1039.
|