Citation: | YU Qiongfang, YANG Pengfei, TANG Gaofeng. Spatiotemporal multi-step prediction of hydraulic support pressure based on LSTM-Informer model[J]. Journal of Mine Automation,2024,50(6):30-35. doi: 10.13272/j.issn.1671-251x.2023120009 |
[1] |
WANG Tong,WANG Qingwei,SHAO Longyi,et al. Current status of the research on coal geology in China[J]. Acta Geologica Sinica(English Edition),2016,90(4):1284-1297. doi: 10.1111/1755-6724.12770
|
[2] |
LIU Yue. Research on the operating mechanism of China's coal market[J]. Agro Food Industry Hi Tech,2017,28(1):3075-3077.
|
[3] |
LIN Jiang,FRIDLEY D,LU Hongyou,et al. Has coal use peaked in China:near-term trends in China's coal consumption[J]. Energy Policy,2018,123:208-214. doi: 10.1016/j.enpol.2018.08.058
|
[4] |
TANG Xu,JIN Yi,MCLELLAN B C,et al. China's coal consumption declining-impermanent or permanent?[J]. Resources,Conservation & Recycling,2018,129:307-313.
|
[5] |
ZHANG Yujiang,FENG Guorui,ZHANG Min,et al. Residual coal exploitation and its impact on sustainable development of the coal industry in China[J]. Energy Policy,2016,96:534-541. doi: 10.1016/j.enpol.2016.06.033
|
[6] |
张吉雄,张强,巨峰,等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报,2018,43(2):377-389.
ZAHNG Jixiong,ZHANG Qiang,JU Feng,et al. Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J]. Journal of China Coal Society,2018,43(2):377-389.
|
[7] |
王世斌,侯恩科,王双明,等. 煤炭安全智能开采地质保障系统软件开发与应用[J]. 煤炭科学技术,2022,50(7):13-24.
WANG Shibin,HOU Enke,WANG Shuangming,et al. Development and application of geological guarantee system software for safe and intelligent coal mining[J]. Coal Science and Technology,2022,50(7):13-24.
|
[8] |
程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295.
CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.
|
[9] |
YANG Li,BIRHANE G E,ZHU Junqi,et al. Mining employees safety and the application of information technology in coal mining:review[J]. Frontiers in Public Health,2021,9. DOI: 10.3389/FPUBH.2021.709987.
|
[10] |
赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.
ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
|
[11] |
李泽萌. 基于LSTM的采煤工作面矿压预测方法研究[D]. 西安:西安科技大学,2020.
LI Zemeng. Research on the prediction method of mining pressure in coal mining face based on LSTM[D]. Xi'an:Xi'an University of Science and Technology,2020.
|
[12] |
曾庆田,吕珍珍,石永奎,等. 基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J]. 煤炭科学技术,2021,49(7):16-23.
ZENG Qingtian,LYU Zhenzhen,SHI Yongkui,et al. Research on prediction of underground coal mining face pressure based on Prophet+LSTM model[J]. Coal Science and Technology,2021,49(7):16-23.
|
[13] |
李泽西. 基于可变时序移位Transformer−LSTM的集成学习矿压预测方法[J]. 工矿自动化,2023,49(7):92-98.
LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation,2023,49(7):92-98.
|
[14] |
LIU Yaping,DONG Lihong,YE Ou. Mine pressure prediction model of fully mechanized mining face based on Improved Transformer[C]. IEEE International Conference on Signal Processing,Communications and Computing,Xi'an,2022:1-5.
|
[15] |
DONG Jianjun,XIE Zhengquan,JIANG Hao,et al. Multiple regression method for working face mining pressure prediction based on hydraulic support monitoring dataset[J]. Frontiers in Earth Science,2023. DOI: 10.3389/FEART.2023.1114033.
|
[16] |
向玲,刘佳宁,苏浩,等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报,2022,43(8):334-339.
XIANG Ling,LIU Jianing,SU Hao,et al. Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta Energiae Solaris Sinica,2022,43(8):334-339.
|
[17] |
潘超,李润宇,王典,等. 基于风速时空关联的多步预测方法[J]. 太阳能学报,2022,43(2):458-464.
PAN Chao,LI Runyu,WANG Dian,et al. Multi-step wind speed prediction method based on wind speed spatial-time correlation[J]. Acta Energiae Solaris Sinica,2022,43(2):458-464.
|
[18] |
JINAH K,TAEKYUNG K,JOON-GYU R,et al. Spatiotemporal graph neural network for multivariate multi-step ahead time-series forecasting of sea temperature[J]. Engineering Applications of Artificial Intelligence,2023,126. DOI: 10.1016/J.ENGAPPAI.2023.106854.
|
[19] |
严恭敏,邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时,2020,7(2):50-64.
YAN Gongmin,DENG Yu. Review on practical Kalman filtering techniques in traditional integrated navigation system[J]. Navigation Positioning and Timing,2020,7(2):50-64.
|
[20] |
ZHOU Haoyi,ZHANG Shanghang,PENG Jieqi,et al. Informer:beyond efficient transformer for long sequence time-series forecasting[C]. AAAI Conference on Artificial Intelligence,Vancouve,2021:11106-11115.
|
[21] |
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems,Long Beach,2017:5998-6008.
|