Citation: | MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation,2024,50(5):67-74. doi: 10.13272/j.issn.1671-251x.2023110084 |
[1] |
刘海忠. 电子围栏中心监控平台的设计与开发[D]. 武汉:华中师范大学,2012.
LIU Haizhong. Design and development of center monitoring platform for electronic fence[D]. Wuhan:Central China Normal University,2012.
|
[2] |
JEONG N Y,LIM S H,LIM E,et al. Pragmatic clinical trials for real-world evidence:concept and implementation[J]. Cardiovascular Pevention and Pharmacotherapy,2020,2(3):85-98. doi: 10.36011/cpp.2020.2.e12
|
[3] |
KLENSKE E D,ZEILINGER M N,SCHOLKOPF B,et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology,2016,24(1):110-121. doi: 10.1109/TCST.2015.2420629
|
[4] |
HUNT K J,SBARBARO D,ŻBIKOWSKI R,et al. Neural networks for control systems-a survey[J]. Automatica,1992,28(6):1083-1112. doi: 10.1016/0005-1098(92)90053-I
|
[5] |
PRESTON D B. Spectral analysis and time series[J]. Technometrics,1983,25(2):213-214. doi: 10.1080/00401706.1983.10487866
|
[6] |
AKAIKE H. Fitting autoregreesive models for prediction[M]//PARZEN E,TANABE K,KITAGAWA G. Selected papers of Hirotugu Akaike. New York:Springer-Verlag New York Inc,1998:131-135.
|
[7] |
ZHANG Jianjing,LIU Hongyi,CHANG Qing,et al. Recurrent neural network for motion trajectory prediction in human-robot collaborative assembly[J]. CIRP Annals,2020,69(1):9-12. doi: 10.1016/j.cirp.2020.04.077
|
[8] |
SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D:Nonlinear Phenomena,2020. DOI: 10.1016/j.physd.2019.132306.
|
[9] |
SONG Xiao,CHEN Kai,LI Xu,et al. Pedestrian trajectory prediction based on deep convolutional LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems,2020,22(6):3285-3302.
|
[10] |
SALZMANN T,IVANOVIC B,CHAKRAVARTY P,et al. Trajectron++:dynamically-feasible trajectory forecasting with heterogeneous data[C]. 16th European Conference on Computer Vision,Glasgow,2020:683-700.
|
[11] |
MOHAMED A,QIAN Kun,ELHOSEINY M,et al. Social-STGCNN:a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:14424-14432.
|
[12] |
SHANKAR V,YOUSEFI E,MANASHTY A,et al. Clinical-GAN:trajectory forecasting of clinical events using transformer and generative adversarial networks[J]. Artificial Intelligence in Medicine,2023,138. DOI: 10.1016/j.artmed.2023.102507.
|
[13] |
HAN Kai,WANG Yunhe,CHEN Hanting,et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(1):87-110. doi: 10.1109/TPAMI.2022.3152247
|
[14] |
GRAHAM B,EL-NOUBY A,TOUVRON H,et al. LeViT:a vision transformer in ConvNet’s clothing for faster inference[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:12259-12269.
|
[15] |
ARNAB A,DEHGHANI M,HEIGOLD G,et al. ViViT:a video vision transformer[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:6836-6846.
|
[16] |
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]. 31st Conference on Neural Information Processing Systems,Long Beach,2017:5998-6008.
|
[17] |
刘赟. ReLU激活函数下卷积神经网络的不同类型噪声增益研究[D]. 南京:南京邮电大学,2023.
LIU Yun. Research on different types of noise gain in convolutional neural networks under ReLU activation function[D]. Nanjing:Nanjing University of Posts and Telecommunications,2023.
|
[18] |
靳晶晶,王佩. 基于卷积神经网络的图像识别算法研究[J]. 通信与信息技术,2022(2):76-81.
JIN Jingjing,WANG Pei. Research on image recognition algorithm based on convolutional neural network[J]. Communications and Information Technology,2022(2):76-81.
|
[19] |
ALAHI A,GOEL K,RAMANATHAN V,et al. Social LSTM:human trajectory prediction in crowded spaces[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:961-971.
|
[20] |
BERGSTRA J,BREULEUX O,BASTIEN F,et al. Theano:a CPU and GPU math compiler in Python[C]. The 9th Python in Science Conference,2010. DOI: 10.25080/majora-92bf1922-003.
|
[21] |
PESARANGHADER A,WANG Yiping,HAVAEI M. CT-SGAN:computed tomography synthesis GAN[C]// ENGELHARDT S,OKSUZ I,ZHU Dajiang,et al. Deep generative models,and data augmentation,labelling,and imperfections. Berlin:Springer-Verlag,2021:67-79.
|