Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Jiawei, WANG Haijun, WU Hanning, et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030
Citation: WANG Jiawei, WANG Haijun, WU Hanning, et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030

Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology

doi: 10.13272/j.issn.1671-251x.2023110030
  • Received Date: 2023-11-09
  • Rev Recd Date: 2024-04-07
  • Available Online: 2024-04-11
  • Hidden disaster causing factor is the key issue that restricts the construction of intelligent coal mining. The 3D geological modeling is the main technical means to achieve transparency of hidden disaster causing factors. At present, the 3D geological modeling technology of coal mines mainly relies on geometric modeling and attribute modeling as a supplement, lacking disaster attribute modeling for hidden disaster causing factors. In order to solve the above problems, taking a coal mine in northern Shaanxi as the research object, the 3D geological modeling is conducted on hidden disaster causing factors such as coal seam thickness, roof and floor structural undulations, waterlogged areas, and shallow coal seam topography. Firstly, the digitization of geological data, geophysical exploration, drilling and other achievements are completed. The coal mine geological database is established. Secondly, the DepthInsight modeling software is used to carry out modeling work from two scales: the entire mine and the working face. The drilling layer data is used as the stratigraphic control point, and the stratigraphic sequence is jointly controlled through coal seam and surface contour lines, virtual drilling, and other data. The layer crossing anomalies in the initial layer model is processed. The ground level model and geological body model are constructed. The digital elevation model is used to construct the surface model of the working face. Thirdly, rock mass modeling is used to construct models of goaf and waterlogging areas, and temperature, gas and other information are annotated. The actual mining measurement data of the working face is used to construct a mining measurement model. Finally, the truncated grid model is created. The permeability and water-rich coefficient model of the aquifer is generated through sequential Gaussian simulation to achieve transparent display of hidden hydrological disaster causing factors in the area. Based on a 3D geological model, the distribution and impact of hidden disaster causing factors are analyzed from multiple perspectives such as strata, coal seams and working faces, goaf and its waterlogged areas, and hydrological attributes. The research results can provide a target area for the precise management of hidden disaster causing factors in coal mines, and assist in the construction of intelligent mining in coal mines.

     

  • loading
  • [1]
    张平松,李洁,李圣林,等. 三维地质建模在煤矿地质可视化中的应用分析[J]. 科学技术与工程,2022,22(5):1725-1740. doi: 10.3969/j.issn.1671-1815.2022.05.002

    ZHANG Pingsong,LI Jie,LI Shenglin,et al. Application status of 3D geological modeling in the development of coal mine intelligence[J]. Science Technology and Engineering,2022,22(5):1725-1740. doi: 10.3969/j.issn.1671-1815.2022.05.002
    [2]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [3]
    聂子淇,周侃,潘启勇. 煤矿常见隐蔽致灾因素及其探查技术分析[J]. 矿产勘查,2020,11(11):2573-2579. doi: 10.3969/j.issn.1674-7801.2020.11.033

    NIE Ziqi,ZHOU Kan,PAN Qiyong. Analysis of common hidden disaster factors in coal mines and its exploration techniques[J]. Mineral Exploration,2020,11(11):2573-2579. doi: 10.3969/j.issn.1674-7801.2020.11.033
    [4]
    袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284.
    [5]
    袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346-2356.

    YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346-2356.
    [6]
    李青元,张洛宜,曹代勇,等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探,2016,52(4):759-767.

    LI Qingyuan,ZHANG Luoyi,CAO Daiyong,et al. Usage,status,problems,trends and suggestions of 3D geological modeling[J]. Geology and Exploration,2016,52(4):759-767.
    [7]
    范文遥,曹梦雪,路来君. 基于GOCAD软件的三维地质建模可视化过程[J]. 科学技术与工程,2020,20(24):9771-9778. doi: 10.3969/j.issn.1671-1815.2020.24.012

    FAN Wenyao,CAO Mengxue,LU Laijun. Visualization process of 3D geological modeling based on GOCAD software[J]. Science Technology and Engineering,2020,20(24):9771-9778. doi: 10.3969/j.issn.1671-1815.2020.24.012
    [8]
    刘安强,王子童. 煤矿三维地质建模相关技术综述[J]. 能源与环保,2020,42(8):136-141.

    LIU Anqiang,WANG Zitong. Overview of 3D geological modeling technology in coal mine[J]. China Energy and Environmental Protection,2020,42(8):136-141.
    [9]
    谷保泽,代振华,李明星,等. 透明地质保障技术构建方法——以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136-143. doi: 10.12363/issn.1001-1986.21.10.0601

    GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:a case study of Wuhai mining area[J]. Coal Geology & Exploration,2022,50(1):136-143. doi: 10.12363/issn.1001-1986.21.10.0601
    [10]
    向中林,顾雪祥,章永梅,等. 基于三维地质建模及可视化的大比例尺深部找矿预测研究及应用:以内蒙古柳坝沟矿区为例[J]. 地学前缘,2014,21(5):227-235.

    XIANG Zhonglin,GU Xuexiang,ZHANG Yongmei,et al. Research and application of large scale deep mineral prospecting prediction based on 3D geological modeling and visualization:a case from Liubagou gold field,Inner Mongolia[J]. Earth Science Frontiers,2014,21(5):227-235.
    [11]
    朱战斌,王泽亮,王宏伟,等. 马泰壕煤矿智能化开采地质构造三维可视化模型构筑关键技术研究[J]. 中国煤炭,2021,47(增刊1):103-110.

    ZHU Zhanbin,WANG Zeliang,WANG Hongwei,et al. Research on key technology of 3D visualization model construction of geological structure for intelligent mining of Mataihao Coal Mine[J]. China Coal,2021,47(S1):103-110.
    [12]
    程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118-126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118-126.
    [13]
    厉飓洲,李国清,侯杰,等. 基于序贯高斯模拟的露天矿境界优化[J]. 矿业研究与开发,2020,40(8):20-26.

    LI Juzhou,LI Guoqing,HOU Jie,et al. Boundary optimization of open-pit mine based on sequential Gaussian simulation[J]. Mining Research and Development,2020,40(8):20-26.
    [14]
    刘晓飞,刘金辉,阳奕汉,等. 巴彦乌拉铀矿床精细三维地质建模[J]. 有色金属(冶炼部分),2022(11):54-63. doi: 10.3969/j.issn.1007-7545.2022.11.009

    LIU Xiaofei,LIU Jinhui,YANG Yihan,et al. Fine 3D geological modeling of Bayanwula uranium deposit[J]. Nonferrous Metals(Extractive Metallurgy),2022(11):54-63. doi: 10.3969/j.issn.1007-7545.2022.11.009
    [15]
    张俊安,刘瑞刚,杨钦,等. 复杂地质结构的四维地质层面自动生成算法[J]. 北京航空航天大学学报,2007,33(9):1094-1098. doi: 10.3969/j.issn.1001-5965.2007.09.022

    ZHANG Jun'an,LIU Ruigang,YANG Qin,et al. Auto-construction algorithm of four-dimensional(4D) geological stratum on complex geological structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(9):1094-1098. doi: 10.3969/j.issn.1001-5965.2007.09.022
    [16]
    孟宪海,杨钦,李吉刚. 基于层面结构的三维闭合地质区块构造算法[J]. 北京航空航天大学学报,2005,31(2):182-186. doi: 10.3969/j.issn.1001-5965.2005.02.016

    MENG Xianhai,YANG Qin,LI Jigang. Construction of coherent 3D geological blocks from stratified geological structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2005,31(2):182-186. doi: 10.3969/j.issn.1001-5965.2005.02.016
    [17]
    刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术[J]. 煤炭科学技术,2022,50(7):67-74.

    LIU Xiaoxiong,WANG Haijun. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam[J]. Coal Science and Technology,2022,50(7):67-74.
    [18]
    桑向阳,王海军,吴敏杰,等. 智能开采工作面煤岩层地球物理测井对比技术[J]. 煤炭技术,2023,42(8):108-112.

    SANG Xiangyang,WANG Haijun,WU Minjie,et al. Geophysical logging and comparison technology of coal rock formation in intelligent mining face[J]. Coal Technology,2023,42(8):108-112.
    [19]
    王海军,曹云,王洪磊. 煤矿智能化关键技术研究与实践[J]. 煤田地质与勘探,2023,51(1):44-54. doi: 10.12363/issn.1001-1986.22.12.0992

    WANG Haijun,CAO Yun,WANG Honglei. Research and practice on key technologies for intelligentization of coal mine[J]. Coal Geology & Exploration,2023,51(1):44-54. doi: 10.12363/issn.1001-1986.22.12.0992
    [20]
    董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003
    [21]
    刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628-2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628-2635.
    [22]
    吴敏杰. 神北炭灰沟煤矿隐蔽致灾因素探查及分析[J]. 煤矿安全,2023,54(5):252-256.

    WU Minjie. Exploration and analysis of hidden disaster factors in North Shenmu Tanhuigou Coal Mine[J]. Safety in Coal Mines,2023,54(5):252-256.
    [23]
    吴敏杰,王相业,张金贵,等. 神北矿区庙梁煤矿隐蔽致灾因素探查与分析[J]. 中国煤炭,2023,49(1):35-43. doi: 10.3969/j.issn.1006-530X.2023.01.005

    WU Minjie,WANG Xiangye,ZHANG Jingui,et al. Exploration and analysis of hidden disaster-causing factors in Miaoliang Coal Mine in Shenbei Mining Area[J]. China Coal,2023,49(1):35-43. doi: 10.3969/j.issn.1006-530X.2023.01.005
    [24]
    朱玉英,王海军,吴艳. 神北矿区河西联办煤矿隐蔽致灾因素分析[J]. 能源与环保,2023,45(6):46-52.

    ZHU Yuying,WANG Haijun,WU Yan. Analysis on hidden disaster factors in Hexi Joint Office Coal Mine in Shenbei Mining Area[J]. China Energy and Environmental Protection,2023,45(6):46-52.
    [25]
    王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12-26.

    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12-26.
    [26]
    王海军,刘善德,马良,等. 面向智能化开采的矿井煤岩层综合对比技术[J]. 煤田地质与勘探,2022,50(2):24-38. doi: 10.12363/issn.1001-1986.21.04.0238

    WANG Haijun,LIU Shande,MA Liang,et al. Comprehensive correlation technology of coal and rock layers in mines for intelligent mining[J]. Coal Geology & Exploration,2022,50(2):24-38. doi: 10.12363/issn.1001-1986.21.04.0238
    [27]
    靳德武,李鹏,赵春虎,等. 采场三维充水结构地质建模及动态可视化实现[J]. 煤炭科学技术,2020,48(7):143-149.

    JIN Dewu,LI Peng,ZHAO Chunhu,et al. Geological modeling and implementation on dynamic visualization of three-dimensional water filling structure in stope of underground mine[J]. Coal Science and Technology,2020,48(7):143-149.
    [28]
    吴敏杰. 无人机在煤矿地表隐蔽灾害排查中的应用[J]. 煤矿安全,2021,52(11):123-129.

    WU Minjie. Application of unmanned aerial vehicle in the investigation of hidden disasters on coal mine surface[J]. Safety in Coal Mines,2021,52(11):123-129.
    [29]
    王海军,吴艳,马良,等. 陕北浅埋煤层一体化漏风通道探查技术[J]. 煤矿安全,2023,54(4):83-90.

    WANG Haijun,WU Yan,MA Liang,et al. Exploration technology of integrated air leakage channel of shallow buried coal seam in northern Shaanxi Province[J]. Safety in Coal Mines,2023,54(4):83-90.
    [30]
    王海军,马良. 陕北侏罗纪煤田三角洲平原沉积环境及其岩石力学特征[J]. 煤田地质与勘探,2019,47(3):61-69. doi: 10.3969/j.issn.1001-1986.2019.03.011

    WANG Haijun,MA Liang. Study on sediment environment and rock mechanics characteristics of the delta plain of Jurassic coalfield in northern Shaanxi[J]. Coal Geology & Exploration,2019,47(3):61-69. doi: 10.3969/j.issn.1001-1986.2019.03.011
    [31]
    毛善君,崔建军,令狐建设,等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539-3548.

    MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539-3548.
    [32]
    王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.

    WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.
    [33]
    王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589

    WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589
    [34]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [35]
    陈龙,郭军,张建中. 三维模型轻量化技术[J]. 工矿自动化,2021,47(5):116-120.

    CHEN Long,GUO Jun,ZHANG Jianzhong. 3D model lightweight technology[J]. Industry and Mine Automation,2021,47(5):116-120.
    [36]
    赵常辛,刘海青. 煤矿智能化开采技术研究现状及展望[J]. 工矿自动化,2022,48(增刊2):27-29.

    ZHAO Changxin,LIU Haiqing. Research status and prospect of intelligent mining technology in coal mine[J]. Journal of Mine Automation,2022,48(S2):27-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (171) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return