Citation: | HAO Qinxia, LI Huimin. Recognition model of IIoT equipment in coal mine[J]. Journal of Mine Automation,2024,50(3):99-107. doi: 10.13272/j.issn.1671-251x.2023100092 |
[1] |
李首滨,刘道园. 基于工业互联网的智能矿山研究与设计[J]. 中国煤炭,2021,47(2):59-65.
LI Shoubin,LIU Daoyuan. Research and design of intelligent mine based on industrial Internet[J]. China Coal,2021,47(2):59-65.
|
[2] |
HAO Qinxia,RONG Zheng. IoTTFID:an incremental IoT device identification model based on traffic fingerprint[J]. IEEE Access,2023,11:58679-58691. doi: 10.1109/ACCESS.2023.3284542
|
[3] |
LIU Jie,SUN Yi,XU Fengkai,et al. IIS:intelligent identification scheme of massive IoT devices[C]. IEEE 45th Annual Computers,Software,and Applications Conference,Madrid,2021:1623-1626.
|
[4] |
ZHOU Feng,QU Hua,LIU Hailong,et al. Fingerprinting IIoT devices through machine learning techniques[J]. Journal of Signal Processing Systems,2021,93:779-794. doi: 10.1007/s11265-021-01656-0
|
[5] |
MIETTINEN M,MARCHAL S,HAFEEZ I,et al. IoT sentinel:automated device-type identification for security enforcement in IoT[C]. IEEE 37th International Conference on Distributed Computing Systems,Atlanta,2017:2177-2184.
|
[6] |
SIVANATHAN A,GHARAKHEILI H H,LOI F,et al. Classifying IoT devices in smart environments using network traffic characteristics[J]. IEEE Transactions on Mobile Computing,2018,18(8):1745-1759.
|
[7] |
MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research,2020,9(1):381-386.
|
[8] |
ALZUBAIDI L,ZHANG Jinglan,HUMAIDI A J,et al. Review of deep learning:concepts,CNN architectures,challenges,applications,future directions[J]. Journal of Big Data,2021,8:1-74. doi: 10.1186/s40537-020-00387-6
|
[9] |
ORTIZ J,CRAWFORD C,LE F. DeviceMien:network device behavior modeling for identifying unknown IoT devices[C]. International Conference on Internet of Things Design and Implementation,Montreal,2019:106-117.
|
[10] |
YIN Feihong,YANG Li,WANG Yuchen,et al. IoT ETEI:end-to-end IoT device identification method[C]. IEEE Conference on Dependable and Secure Computing,Aizuwakamatsu,2021:1-8.
|
[11] |
KOTAK J,ELOVICI Y. IoT device identification based on network communication analysis using deep learning[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14(7):9113-9129. doi: 10.1007/s12652-022-04415-6
|
[12] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems,2012,25(2). DOI: 10.1145/3065386.
|
[13] |
HOWARD A,SANDLER M,CHEN Bo,et al. Searching for mobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
|
[14] |
ELSKEN T,METZEN J H,HUTTER F. Neural architecture search:a survey[J]. Journal of Machine Learning Research,2019,20(55):1-21.
|
[15] |
HAN Song,MAO Huizi,DALLY W J. Deep compression:compressing deep neural networks with pruning,trained quantization and Huffman coding[J]. Fiber,2015,56(4):3-7.
|
[16] |
HAN Song,POOL J,TRAN J,et al. Learning both weights and connections for efficient neural network[J]. Advances in Neural Information Processing Systems,2015. DOI: 10.48550/arXiv.1506.02626.
|
[17] |
王军,冯孙铖,程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程,2021,47(8):1-13.
WANG Jun,FENG Suncheng,CHENG Yong. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering,2021,47(8):1-13.
|
[18] |
WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
|
[19] |
GULRAJANI I,AHMED F,ARJOVSKY M,et al. Improved training of Wasserstein GANs[J]. Advances in Neural Information Processing Systems,2017. DOI: 10.48550/arXiv.1704.00028.
|
[20] |
DUBEY S R,SINGH S K,CHAUDHURI B B. Activation functions in deep learning:a comprehensive survey and benchmark[J]. Neurocomputing,2022,503:92-108. doi: 10.1016/j.neucom.2022.06.111
|
[21] |
WANG Wei,ZHU Ming,WANG Jinlin,et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]. IEEE International Conference on Intelligence and Security Informatics,Beijing,2017:43-48.
|
[22] |
王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 合肥:中国科学技术大学,2018.
WANG Wei. Deep learning for network traffic classification and anomaly detection[D]. Hefei:University of Science and Technology of China,2018.
|
[23] |
WANG Wei,ZHU Ming,ZENG Xuewen,et al. Malware traffic classification using convolutional neural network for representation learning[C]. International Conference on Information Networking,Da Nang,2017:712-717.
|
[24] |
KOUKIS D,ANTONATOS S,ANTONIADES D,et al. A generic anonymization framework for network traffic[C]. IEEE International Conference on Communications,Istanbul,2006:2302-2309.
|
[25] |
WANG Wei,SHENG Yiqiang,WANG Jinlin,et al. HAST-IDS:learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access,2017,6:1792-1806.
|
[26] |
FAN Linna,HE Lin,DONG Enhuan,et al. EvoIoT:an evolutionary IoT and non-IoT classification model in open environments[J]. Computer Networks,2022,219. DOI: 10.1016/j.comnet.2022.109450.
|
[27] |
孙洁娣,王利轩,温江涛,等. 改进稠密块轻量化神经网络的管道泄漏孔径识别[J]. 仪器仪表学报,2022,43(3):98-108.
SUN Jiedi,WANG Lixuan,WEN Jiangtao,et al. Pipeline leakage aperture recognition based on lightweight neural network with the improved dense block[J]. Chinese Journal of Scientific Instrument,2022,43(3):98-108.
|
[28] |
HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
|
[29] |
WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11534-11542.
|
[30] |
HU Jie,SHEN Li,ALBANIE S,et al. Gather-excite:exploiting feature context in convolutional neural networks[J]. Advances in Neural Information Processing Systems,2018. DOI: 10.48550/arXiv.1810.12348.
|
[31] |
LI Xiang,WANG Wenhai,HU Xiaolin,et al. Selective kernel networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Long Beach,2019:510-519.
|
[32] |
SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]. IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:4510-4520.
|
[33] |
THOUTI S,VENU N,RINKU D R,et al. Investigation on identify the multiple issues in IoT devices using convolutional neural network[J]. Measurement:Sensors,2022. DOI: 10.1016/j.measen.2022.100509.
|
[34] |
何志敏. 基于网络流量的物联网设备识别技术研究[D]. 南京:南京邮电大学,2022.
HE Zhimin. Research on IoT device identification method based on network traffic[D]. Nanjing:Nanjing University of Posts and Telecommunications,2022.
|