Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LIU Shiyuan. Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios[J]. Journal of Mine Automation,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089
Citation: LIU Shiyuan. Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios[J]. Journal of Mine Automation,2024,50(4):159-168.  doi: 10.13272/j.issn.1671-251x.2023090089

Research on decoupling control method for single-phase cascade H-bridge rectifier in coal mine scenarios

doi: 10.13272/j.issn.1671-251x.2023090089
  • Received Date: 2023-09-29
  • Rev Recd Date: 2024-03-25
  • Available Online: 2024-05-10
  • In response to the problems of secondary voltage ripple on the DC side of single-phase cascade H-bridge rectifiers during operation in coal mine scenarios, such as grid side current distortion and capacitance drift, this paper analyzes the causes of secondary voltage ripple on the DC side of single-phase cascade H-bridge rectifiers and proposes an optimization control method based on an independent decoupling topology with unequal split capacitors. This method effectively suppresses the secondary voltage ripple on the DC side by overlaying twice the power frequency voltage on both ends of the capacitor to counteract the secondary voltage ripple. A study is conducted on parameter design and control strategies for three decoupling methods based on constructing secondary voltage (DC split capacitor with unequal capacitance values and equal DC voltage components; DC split capacitor with unequal capacitance values and unequal DC voltage components; DC split capacitor with equal capacitance values and unequal DC voltage components). By analyzing the influence of parameters on the amplitude of secondary voltage, the optimal parameter range is determined to achieve effective power decoupling, reduce capacitance values, and lower equipment volume and cost. The simulation results show the following points. ① The split capacitor IAPD (SC-IAPD) is added at 0.2 s, SC-IAPD circuit control method based on decoupling method 2, SC-IAPD circuit optimization control method based on decoupling method 2, and SC-IAPD circuit control method based on decoupling method 1 all control the DC side output voltage ripple at 1-1.5 V. This indicates that the symmetrical half bridge decoupling circuit can effectively suppress DC voltage fluctuations and has good decoupling performance when load changes. ② In the case of light load switching to heavy load, the optimized control method of SC-IAPD circuit based on decoupling method 2 can quickly follow the changes in load, achieve ripple suppression, and have stronger load carrying capacity and better decoupling effect. In the case of heavy load switching to light load, the SC-IAPD circuit control method based on decoupling method 1 can better achieve decoupling performance, controlling voltage ripple within 1 V. If we consider minimizing the capacitance value, the control method of SC-IAPD circuit based on decoupling method 2 is more advantageous. The experimental results show the following points. ① Before the sudden change of load, both traditional control methods and decoupling control methods based on secondary voltage can effectively suppress the voltage ripple on the DC side. However, decoupling control methods based on secondary voltage have better effects in suppressing voltage ripple, resulting in smaller voltage ripple on the DC side. ② After a sudden change in load, traditional control methods cannot maintain the stability of the DC side voltage, resulting in significant oscillations and loss of stability.

     

  • loading
  • [1]
    张传金,李雨潭,刘战,等. 矿用LCL型三电平静止无功发生器控制策略[J]. 工矿自动化,2020,46(5):87-93.

    ZHANG Chuanjin,LI Yutan,LIU Zhan,et al. Control strategy of mine-used LCL three-level static var generator[J]. Industry and Mine Automation,2020,46(5):87-93.
    [2]
    田旭,马越. 矿井链式静止同步补偿器电流跟踪控制策略[J]. 工矿自动化,2019,45(4):49-53,82.

    TIAN Xu,MA Yue. Current tracking control strategy for mine chain STATCOM[J]. Industry and Mine Automation,2019,45(4):49-53,82.
    [3]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [4]
    李悦. 九部门联合印发“十四五”可再生能源发展规划[N]. 中国气象报,2022-06-08(第1版).

    LI Yue. Nine departments jointly issued the 14th Five-Year Plan for renewable energy development[N]. China Meteorological News,2022-06-08(1th ed).
    [5]
    梅家棋,赵一潇,程晋培,等. 混合级联桥式整流电路与级联多电平整流电路应用研究[J]. 煤炭工程,2021,53(12):125-130.

    MEI Jiaqi,ZHAO Yixiao,CHENG Jinpei,et al. Application of hybrid cascade bridge rectifier circuit and cascade multilevel rectifier circuit[J]. Coal Engineering,2021,53(12):125-130.
    [6]
    李定甲,苏玉香,刘安国,等. 矿用级联多电平变换器输出谐波特性研究[J]. 煤矿机械,2023,44(10):37-39.

    LI Dingjia,SU Yuxiang,LIU Anguo,et al. Research on output harmonic characteristics of mining cascade multilevel converter[J]. Coal Mine Machinery,2023,44(10):37-39.
    [7]
    李定甲,苏玉香,刘安国,等. 级联多电平有源电力滤波器在煤矿电网谐波补偿中的应用研究[J]. 煤矿机械,2023,44(8):154-156.

    LI Dingjia,SU Yuxiang,LIU Anguo,et al. Research on application of cascaded multi-level active power filter on harmonic compensation of coal mine power grid[J]. Coal Mine Machinery,2023,44(8):154-156.
    [8]
    陶海军,肖群星,张金生,等. 单相级联型多电平变换器直流纹波电压分析及抑制策略[J]. 河南理工大学学报(自然科学版),2024,43(1):113-123.

    TAO Haijun,XIAO Qunxing,ZHANG Jinsheng,et al. Analysis and suppression strategy of DC ripple voltage of single-phase cascaded multilevel converter[J]. Journal of Henan Polytechnic University(Natural Science),2024,43(1):113-123.
    [9]
    贺虎成,谭阜琛,司堂堂,等. 基于SVG的采煤机电能质量控制策略研究[J]. 煤炭工程,2022,54(8):129-135.

    HE Hucheng,TAN Fuchen,SI Tangtang,et al. Control strategy of electric power quality governance of coal shearer based on SVG[J]. Coal Engineering,2022,54(8):129-135.
    [10]
    叶满园,康力璇. 单相级联H桥光伏并网逆变器功率平衡控制策略研究[J]. 电源学报,2020,18(4):137-143.

    YE Manyuan,KANG Lixuan. Research on power balance control strategy for single-phase cascaded H-bridge photovoltaic grid-connected inverter[J]. Journal of Power Supply,2020,18(4):137-143.
    [11]
    SAJADI R,IMAN-EINI H,BAKHSHIZADEH M K,et al. Selective harmonic elimination technique with control of capacitive DC link voltages in an asymmetric cascaded H-bridge inverter for STATCOM application[J]. IEEE Transactions on Industrial Electronics,2018,65(11):8788-8796. doi: 10.1109/TIE.2018.2811365
    [12]
    WANG Yingjie,LIU Feilong,CHEN Shuai,et al. Prediction errors analysis and correction on FCS-MPC for the cascaded H-bridge multilevel inverter[J]. IEEE Transactions on Industrial Electronics,2022,69(8):8264-8273. doi: 10.1109/TIE.2021.3104594
    [13]
    ZHAO Xiangkun,XU Gaoxiang,WANG Li,et al. A novel clustered voltage balance for cascaded H-bridge STATCOM with CCS-MPC[C]. IEEE 4th International Electrical and Energy Conference,Wuhan,2021:1-6.
    [14]
    YE Manyuan,KANG Lixuan,XIAO Yunhuang,et al. Modified hybrid modulation strategy with power balance control for H-bridge hybrid cascaded seven-level inverter[J]. IET Power Electronics,2018,11(6):1046-1054. doi: 10.1049/iet-pel.2017.0558
    [15]
    YE Zongbin,WANG Tingting,MAO Shiqi,et al. A PWM strategy based on state transition for cascaded H-bridge inverter under unbalanced DC sources[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(2):1686-1700. doi: 10.1109/JESTPE.2019.2893936
    [16]
    YE Zongbin,ZHENG Qisheng,PEI Hanjun,et al. New inter and inner phase power control method for cascaded H-bridge based on simplified PWM strategy[J]. IEEE Transactions on Power Electronics,2020,35(8):8607-8623. doi: 10.1109/TPEL.2019.2961945
    [17]
    IHOR O,LARYSA A,SERHII B. Research of closed loop control systems of the electric drive of mine electric locomotive with the DC series motor and nonlinear load[C]. IEEE International Conference on Modern Electrical and Energy Systems,Kremenchuk,2021: 1-6.
    [18]
    BAO Jusheng,YANG Shuai,GE Shirong,et al. Design and experiments on a hybrid electric drive system for underground coal mine locomotives[C]. IEEE International Conference on Mechatronics,Robotics and Automation,Hefei,2018:117-121.
    [19]
    GAUTAM A R,FULWANI D M,MAKINENI R R,et al. Control strategies and power decoupling topologies to mitigate 2ω-ripple in single-phase inverters:a review and open challenges[J]. IEEE Access,2020,8:147533-147559. doi: 10.1109/ACCESS.2020.3015315
    [20]
    袁义生,毛凯翔. 基于负载电流前馈的级联SCHBR直流电压平衡策略[J]. 电力自动化设备,2019,39(6):33-38,53.

    YUAN Yisheng,MAO Kaixiang. DC voltage balance strategy for cascaded H-bridge rectifier based on load current feedforward[J]. Electric Power Automation Equipment,2019,39(6):33-38,53.
    [21]
    WATANABE H,SAKURABA T,FURUKAWA K,et al. Development of DC to single-phase AC voltage source inverter with active power decoupling based on flying capacitor DC/DC converter[J]. IEEE Transactions on Power Electronics,2018,33(6):4992-5004. doi: 10.1109/TPEL.2017.2727063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (68) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return