Citation: | XU Jun, ZHAO Xiaohu, HOU Nianqi, et al. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation,2024,50(5):151-156. doi: 10.13272/j.issn.1671-251x.2023090069 |
[1] |
孙艺凌. 基于数字孪生与混合现实技术的机电设备辅助维修方法研究[J]. 中国新技术新产品,2024(2):36-38.
SUN Yiling. Research on auxiliary maintenance methods for mechanical and electrical equipment based on digital twin and hybrid reality technology[J]. New Technologies and New Products of China,2024(2):36-38.
|
[2] |
李喆,陈佳宁,张林鍹. 核电站设备维修中混合现实技术的应用研究[J]. 计算机仿真,2018,35(5):340-345.
LI Zhe,CHEN Jianing,ZHANG Linxuan. Application of mixed reality technology in maintenance of nuclear power stations[J]. Computer Simulation,2018,35(5):340-345.
|
[3] |
WOLFARTSBERGER J,ZENISEK J,WILD N. Data-driven maintenance:combining predictive maintenance and mixed reality-supported remote assistance[C]. 10th Conference on Learning Factories,Graz,2020:307-312.
|
[4] |
张旭辉,张雨萌,王妙云,等. 基于混合现实的矿用设备维修指导系统[J]. 工矿自动化,2019,45(6):27-31.
ZHANG Xuhui,ZHANG Yumeng,WANG Miaoyun,et al. Maintenance guidance system of mine-used equipments based on mixed reality[J]. Industry and Mine Automation,2019,45(6):27-31.
|
[5] |
朱金达,赵永衡. 基于混合现实的自行火炮维修指导系统[J]. 兵器装备工程学报,2023,44(4):45-52. doi: 10.11809/bqzbgcxb2023.04.008
ZHU Jinda,ZHAO Yongheng. Mixed reality-based self-propelled artillery repair guidance system[J]. Journal of Ordnance Equipment Engineering,2023,44(4):45-52. doi: 10.11809/bqzbgcxb2023.04.008
|
[6] |
张旭辉,张雨萌,王岩,等. 融合数字孪生与混合现实技术的机电设备辅助维修方法[J]. 计算机集成制造系统,2021,27(8):2187-2195.
ZHANG Xuhui,ZHANG Yumeng,WANG Yan,et al. Auxiliary maintenance method for electromechanical equipment integrating digital twin and mixed reality technology[J]. Computer Integrated Manufacturing Systems,2021,27(8):2187-2195.
|
[7] |
王崴,洪学峰,雷松贵. 基于MR的机电装备智能检测维修[J]. 图学学报,2022,43(1):141-148.
WANG Wei,HONG Xuefeng,LEI Songgui. Intelligent inspection and maintenance of mechanical and electrical equipment based on MR[J]. Journal of Graphics,2022,43(1):141-148.
|
[8] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
|
[9] |
REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
|
[10] |
REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1804.02767.
|
[11] |
LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multiBox detector[C]. The 14th European Conference on Computer Vision,Amsterdam,2016:21-37.
|
[12] |
BOCHKOVSKIY A,WANG C Y,LIAO H. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2004.10934.
|
[13] |
CHEN H-Y,SU C-Y. An enhanced hybrid MobileNet[C]. The 9th International Conference on Awareness Science and Technology,Fukuoka,2018:308-312.
|
[14] |
HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
|
[15] |
HOWARD A G,ZHU Menglong,CHEN Bo,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1704.04861.
|
[16] |
SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[EB/OL]. [2024-03-05]. http://arxiv.org/pdf/1801.04381.pdf.
|
[17] |
HAN Kai,WANG Yunhe,TIAN Qi,et al. Ghostnet:more features from cheap operations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1580-1589.
|
[18] |
ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856.
|
[19] |
刘慧杰,陈强. 基于ORB特征的改进RGB−D视觉里程计[J]. 制造业自动化,2022,44(7):56-59,106.
LIU Huijie,CHEN Qiang. Improved RGB-D visual odometer based on ORB feature[J]. Manufacturing Automation,2022,44(7):56-59,106.
|
[20] |
FAN Y C,HAN H,TANG Y L,et al. Dynamic objects elimination in SLAM based on image fusion[J]. Pattern Recognition Letters,2018,13(2):56-59.
|
[21] |
NEWCOMBE R A,IZADI S,HILLIGES O,el al. KinectFusion:Real-time dense surface mapping and tracking[C]. The 10th IEEE International Symposium on Mixed and Augmented Reality,Basel,2011:127-136.
|