Citation: | CHENG Lei, LI Zhengjian, SHI Haorong, et al. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation,2024,50(1):131-137. doi: 10.13272/j.issn.1671-251x.2023090062 |
[1] |
王超,李岳峰,张成良. 基于不同指标无量纲化方法的岩爆预测模型优选[J]. 中国安全生产科学技术,2020,16(2):24-29.
WANG Chao,LI Yuefeng,ZHANG Chengliang. Optimization of rockburst prediction model based on different index dimensionless methods[J]. Journal of Safety Science and Technology,2020,16(2):24-29.
|
[2] |
杨小彬,裴艳宇,程虹铭,等. 基于SOFM神经网络模型的岩爆烈度等级预测方法[J]. 岩石力学与工程学报,2021,40(增刊1):2708-2715.
YANG Xiaobin,PEI Yanyu,CHENG Hongming,et al. Prediction method of rockburst intensity grade based on SOFM neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2708-2715.
|
[3] |
付华,付昱,赵俊程,等. 基于KPCA−ARIMA算法的瓦斯涌出量预测[J]. 辽宁工程技术大学学报(自然科学版),2022,41(5):406-412.
FU Hua,FU Yu,ZHAO Juncheng,et al. Prediction of gas emission based on KPCA-ARIMA algorithm[J]. Journal of Liaoning Technical University(Natural Science),2022,41(5):406-412.
|
[4] |
马恒,任美学,高科. 基于随机搜索优化XGBoost的瓦斯涌出量预测模型[J]. 中国安全生产科学技术,2022,18(5):129-134.
MA Heng,REN Meixue,GAO Ke. Prediction model of gas emission amount based on XGBoost optimized with random search algorithm[J]. Journal of Safety Science and Technology,2022,18(5):129-134.
|
[5] |
汤国水,张宏伟,韩军,等. 基于MABC−SVM的含瓦斯煤体渗透率预测模型[J]. 中国安全生产科学技术,2015,11(2):11-16.
TANG Guoshui,ZHANG Hongwei,HAN Jun,et al. Prediction model on permeability of gas-bearing coal based on MABC-SVM[J]. Journal of Safety Science and Technology,2015,11(2):11-16.
|
[6] |
谢丽蓉,路朋,范文慧,等. 基于LVQ−CPSO−BP算法的煤体瓦斯渗透率预测方法研究[J]. 采矿与安全工程学报,2017,34(2):398-404.
XIE Lirong,LU Peng,FAN Wenhui,et al. LVQ-CPSO-BP-based prediction technique of coal gas permeability rate[J]. Journal of Mining & Safety Engineering,2017,34(2):398-404.
|
[7] |
高佳南,吴奉亮,马砺,等. 矿井淋水井筒风温PSO-SVR预测方法[J]. 西安科技大学学报,2022,42(3):476-483.
GAO Jianan,WU Fengliang,MA Li,et al. PSO−SVR prediction method of airflow temperature of shaft with water dropping in mine[J]. Journal of Xi'an University of Science and Technology,2022,42(3):476-483.
|
[8] |
纪俊红,马铭阳,崔铁军,等. GSK−XGBoost模型在井底风温预测中的应用[J]. 中国安全生产科学技术,2022,18(3):131-136.
JI Junhong,MA Mingyang,CUI Tiejun,et al. Application of GSK-XGBoost model in prediction of wind temperature at well bottom[J]. Journal of Safety Science and Technology,2022,18(3):131-136.
|
[9] |
吕品,左金宝,倪小军. 基于BP神经网络的矿井淋水井筒风温预测[J]. 煤矿安全,2008,39(12):11-13.
LYU Pin,ZUO Jinbao,NI Xiaojun. BP neural network for predicting air temperature of watering well in mine[J]. Safety in Coal Mines,2008,39(12):11-13.
|
[10] |
张翔,王佰顺,徐硕,等. 基于PSO−BP的矿井淋水井筒风温预测[J]. 煤矿安全,2012,43(11):178-181.
ZHANG Xiang,WANG Baishun,XU Shuo,et al. Prediction of airflow temperature of shafts with water dropping based on PSO−BP neural network[J]. Safety in Coal Mines,2012,43(11):178-181.
|
[11] |
马恒,刘亮亮. 基于T−S模糊神经网络的淋水井筒温度预测分析[J]. 世界科技研究与发展,2015,37(3):226-229.
MA Heng,LIU Liangliang. Prediction analysis of temperature of wellbore with spay water based on T-S fuzzy neural network[J]. World Sci-tech R & D,2015,37(3):226-229.
|
[12] |
段艳艳. 基于支持向量机的矿井风温预测[D]. 西安:西安科技大学,2013.
DUAN Yanyan. Prediction of the mine air temperature based on support vector machine[D]. Xi'an:Xi'an University of Science and Technology,2013.
|
[13] |
张群. 潘三矿热害调查及风温预测研究[D]. 淮南:安徽理工大学,2015.
ZHANG Qun. The thermal damage investigation and wind temperature prediction research of Panji No. 3 Colliery[D]. Huainan:Anhui University of Science and Technology,2015.
|
[14] |
何启林,任克斌. 深井建井期入风井筒风温的预测[J]. 煤炭工程,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020
HE Qilin,REN Kebin. Prediction of air temperature in the inlet well during deep well construction period[J]. Coal Engineering,2002,34(8):47-48. doi: 10.3969/j.issn.1671-0959.2002.08.020
|
[15] |
顾伟红,赵雪. 基于GRA−SSA−Elman的隧道施工瓦斯安全性预测评价[J]. 自然灾害学报,2023,32(6):230-239.
GU Weihong,ZHAO Xue. Gas safety prediction and evaluation of tunnel construction based on GRA-SSA-Elman[J]. Journal of Natural Disasters,2023,32(6):230-239.
|
[16] |
乔寅威,贾新春,关燕鹏,等. 基于DE−WOA的Elman神经网络的空气质量预测方法及应用 [J/OL]. 控制工程,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929.
QIAO Yinwei,JIA Xinchun,GUAN Yanpeng,et al. Air quality prediction method and its application of Elman neural network based on DE-WOA[J/OL]. Control Engineering of China,1-8[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220929.
|
[17] |
吴定会,朱勇,范俊岩,等. 基于双重注意力IJAYA−Elman的高炉煤气柜位预测[J/OL]. 控制工程,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463.
WU Dinghui,ZHU Yong,FAN Junyan,et al. Prediction of blast furnace gas holder lever based on double attention IJAYA-Elman[J/OL]. Control Engineering of China,1-9[2023-08-17]. https://doi.org/10.14107/j.cnki.kzgc.20220463.
|
[18] |
李练兵,朱乐,李思佳,等. 基于差分电压和ICS−Elman神经网络的锂离子电池剩余使用寿命预测方法[J]. 太阳能学报,2023,44(12):433-443.
LI Lianbing,ZHU Le,LI Sijia,et al. Remaining useful life prediction of lithium-ion batteries based on differential voltage and ICS-Elman neural networks[J]. Acta Energiae Solaris Sinica,2023,44(12):433-443.
|
[19] |
韩会宾. 基于目标PSO算法的工程项目优化研究[J]. 西南大学学报(自然科学版),2023,45(12):167-177.
HAN Huibin. Research on engineering project optimization based on target PSO algorithm[J]. Journal of Southwest University(Natural Science Edition),2023,45(12):167-177.
|
[20] |
焦龄霄,周凯,张子熙,等. 基于mRMR−IPSO的短期负荷预测双阶段特征选择 [J/OL]. 重庆大学学报,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html.
JIAO Lingxiao,ZHOU Kai,ZHANG Zixi,et al. Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO[J/OL]. Journal of Chongqing University,1-13[2023-08-17]. http://kns.cnki.net/kcms/detail/50.1044.N.20231206.1636.002.html.
|
[21] |
吴以童,李斌,刘春,等. 融合GMM和PSO的储罐超声检测机器人避障研究[J]. 计算机仿真,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078
WU Yitong,LI Bin,LIU Chun,et al. Research on obstacle avoidance of storage tank ultrasonic inspection robot integrating GMM and PSO[J]. Computer Simulation,2023,40(11):408-414. doi: 10.3969/j.issn.1006-9348.2023.11.078
|