Citation: | LI Zhongfei, FENG Shiyong, GUO Jun, et al. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation,2023,49(11):151-159. doi: 10.13272/j.issn.1671-251x.2023080123 |
[1] |
方伟立,丁烈云. 工人不安全行为智能识别与矫正研究[J]. 华中科技大学学报(自然科学版),2022,50(8):131-135.
FANG Weili,DING Lieyun. Artificial intelligence-based recognition and modification of workers' unsafe behavior[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):131-135.
|
[2] |
程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.
CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
|
[3] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[4] |
李琪瑞. 基于人体识别的安全帽视频检测系统研究与实现[D]. 成都:电子科技大学,2017.
LI Qirui. A research and implementation of safety-helmet video detection system based on human body recognition[D]. Chengdu:University of Electronic Science and Technology of China,2017.
|
[5] |
SUN Xiaoming,XU Kaige,WANG Sen,et al. Detection and tracking of safety helmet in factory environment[J]. Measurement Science and Technology,2021,32(10). DOI: 10.1088/1361-6501/ac06ff.
|
[6] |
LI Tan,LYU Xinyue,LIAN Xiaofeng,et al. YOLOv4_Drone:UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers & Electrical Engineering,2021,93(8). DOI: 10.1016/j.compeleceng.2021.107261.
|
[7] |
徐守坤,王雅如,顾玉宛,等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究,2020,37(3):901-905.
XU Shoukun,WANG Yaru,GU Yuwan,et al. Safety helmet wearing detection study based on improved Faster RCNN[J]. Application Research of Computers,2020,37(3):901-905.
|
[8] |
WANG Xuanyu,NIU Dan,LUO Puxuan,et al. A safety helmet and protective clothing detection method based on improved-YoloV3[C]. Chinese Automation Congress,Shanghai,2020:5437-5441.
|
[9] |
罗欣宇. 基于深度学习的工地安全防护检测系统[D]. 杭州:杭州电子科技大学,2020.
LUO Xinyu. Construction site safety protection detection system based on deep learning[D]. Hangzhou:Hangzhou Dianzi University,2020.
|
[10] |
梁思成. 基于卷积神经网络的安全帽检测研究[D]. 哈尔滨:哈尔滨工业大学,2021.
LIANG Sicheng. Research on safety helmet wearing detection based on convolutional neural network[D]. Harbin:Harbin Institute of Technology,2021.
|
[11] |
张培基. 工业监控视频中的安全服与安全帽检测方法研究[D]. 武汉:华中科技大学,2021.
ZHANG Peiji. Research on detection methods of safety clothing and safety helmet in industrial surveillance video[D]. Wuhan:Huazhong University of Science and Technology,2021.
|
[12] |
BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:9-12.
|
[13] |
SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:4510-4520.
|
[14] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
[15] |
LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
|
[16] |
HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
|
[17] |
HAN Kai,WANG Yunhe,TIAN Qi,et al. GhostNet:more features from cheap operations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1577-1586.
|
[18] |
HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
|
[19] |
WOO S H,PARK J Y,LEE J Y,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
|
[20] |
HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
|
[21] |
ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856.
|
[22] |
寇旗旗,黄绩,程德强,等. 基于语义融合的域内相似性分组行人重识别[J]. 通信学报,2022,43(7):153-162.
KOU Qiqi,HUANG Ji,CHENG Deqiang,et al. Person re-identification with intra-domain similarity grouping based on semantic fusion[J]. Journal on Communications,2022,43(7):153-162.
|
[23] |
CHENG Deqiang,CHEN Liangliang,LYU Chen,et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8436-8449. doi: 10.1109/TCSVT.2022.3194169
|
[24] |
LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Amsterdam,2016:21-37.
|
[25] |
TAN Mingxing,PANG Ruoming,QUOC V L. EfficientDet:scalable and efficient object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10781-10790.
|
[26] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[27] |
DUAN Kaiwen,BAI Song,XIE Lingxi,et al. CenterNet:keypoint triplets for object detection[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:6568-6577.
|
[28] |
GE Zheng,LIU Songtao,WANG Feng,et al. YOLOX:exceeding YOLO series in 2021[EB/OL].[2023-08-03]. https://arxiv.org/abs/2107.08430.
|
[29] |
NICOLAS C,FRANCISCO M,GABRIEL S,et al. End-to-end object detection with transformers[C]. European Conference on Computer Vision,Glasgow,2020:213-229.
|
[30] |
WANG C Y,BOCHKOVSKIY A,LIAO H Y M. Scaled-YOLOv4:scaling cross stage partial network[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13024-13033.
|
[31] |
Ultralytics. YOLOv5[EB/OL]. [2023-08-12]. https://github.com/ultralytics/yolov5.
|