Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
XUE Jiangda, SUN Yongkang, WANG Jun, et al. Hydraulic fracturing weakening roof borehole protection technology[J]. Journal of Mine Automation,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114
Citation: XUE Jiangda, SUN Yongkang, WANG Jun, et al. Hydraulic fracturing weakening roof borehole protection technology[J]. Journal of Mine Automation,2024,50(3):160-166.  doi: 10.13272/j.issn.1671-251x.2023080114

Hydraulic fracturing weakening roof borehole protection technology

doi: 10.13272/j.issn.1671-251x.2023080114
  • Received Date: 2023-08-29
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-04-11
  • In the case of sequential mining with single wing arrangement in coal mine working face, the drilling along the working face is easily affected by the support stress of adjacent working faces, leading to drilling failure. At present, research on borehole protection focuses on enhancing the strength of the borehole itself, without proposing solutions to the fundamental factors that affect borehole stability. In order to solve the above problems, a hydraulic fracturing weakening roof borehole protection technology has been proposed. By using hydraulic fracturing to weaken the roof, the peak mining support stress acting on adjacent coal working faces is reduced, and the transmission of high support stress to the surrounding coal bodies in the bedding boreholes is blocked. The entire process of screening is carried out in the bedding boreholes to ensure that the gas escaping from the coal body can enter the bedding boreholes. Numerical simulation is used to analyze the changes in vertical stress and plastic zone of the coal body around the borehole before and after hydraulic fracturing weakening the roof. The results show that by weakening the roof through hydraulic fracturing, the peak vertical stress of the coal body around the borehole decreases from 21.2 MPa to 9.1 MPa, and the plastic zone range of the coal body decreases from 19 m to 11 m. According to the numerical simulation results, hydraulic fracturing parameters are determined and tested on site. The results show that after using hydraulic fracturing weakening roof borehole protection technology, the average volume fraction of gas extraction from boreholes increases from 3.6% to 14.1%. The average mixed flow rate of gas extraction decreases from 1.28 m3/min to 0.464 m3/min. There is no occurrence of coal oxidation and CO production in a large area of bedding boreholes. Therefore, hydraulic fracturing weakening roof borehole protection technology can effectively avoid drilling failure and gas leakage, improve drilling and extraction efficiency, and ensure drilling and extraction safety.

     

  • loading
  • [1]
    詹小凡. 煤与瓦斯突出事故分析及预测研究[D]. 阜新:辽宁工程技术大学,2020.

    ZHAN Xiaofan. Accidents analysis and prediction of coal and gas outburst[D]. Fuxin:Liaoning Technical University,2020.
    [2]
    孙杰,陈美英,唐朝苗,等. 我国煤炭资源勘查现状跟踪研究[J]. 中国煤炭地质,2017,29(11):1-8. doi: 10.3969/j.issn.1674-1803.2017.11.01

    SUN Jie,CHEN Meiying,TANG Zhaomiao,et al. Tracking study of coal resources exploration status quo in China[J]. Coal Geology of China,2017,29(11):1-8. doi: 10.3969/j.issn.1674-1803.2017.11.01
    [3]
    王刚,杨曙光,张寿平,等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术,2020,48(3):154-161.

    WANG Gang,YANG Shuguang,ZHANG Shouping,et al. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang Coal Mining Area[J]. Coal Science and Technology,2020,48(3):154-161.
    [4]
    刘军,卢鹏,刘志宽,等. 顺层钻孔瓦斯抽采叠加效应影响研究[J/OL]. 煤炭科学技术:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231120.1014.001.html.

    LIU Jun,LU Peng,LIU Zhikuan,et al. Study on the influence of superimposed effect of gas extraction in downhole drilling[J/OL]. Coal Science and Technology:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231120.1014.001.html.
    [5]
    叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气,2020,17(4):44-47. doi: 10.3969/j.issn.1672-3074.2020.04.010

    YE Lan. Research on rules and prevention measures of gas accidents in China[J]. China Coalbed Methane,2020,17(4):44-47. doi: 10.3969/j.issn.1672-3074.2020.04.010
    [6]
    张剀文. 顺层钻孔瓦斯抽采浓度影响机理及其调控优化研究[D]. 西安:西安科技大学,2022.

    ZHANG Kaiwen. Study on the influence mechanism of gas extraction concentration and its regulation and optimization in bedding borehole[D]. Xi'an:Xi'an University of Science and Technology,2022.
    [7]
    许胜军. 基于UDEC和D−P准则的煤层钻孔稳定性分析[J]. 煤矿安全,2013,44(3):160-162,165.

    XU Shengjun. Seam drilling stability analysis based on UDEC and D-P standards[J]. Safety in Coal Mines,2013,44(3):160-162,165.
    [8]
    王超,张雷林,翟文杰,等. 五轮山煤矿瓦斯抽采钻孔封孔工艺优化研究[J]. 煤炭技术,2019,38(5):99-101.

    WANG Chao,ZHANG Leilin,ZHAI Wenjie,et al. Optimization study on sealing process of gas drainage borehole in Wulunshan Coal Mine[J]. Coal Technology,2019,38(5):99-101.
    [9]
    姚向荣,程功林,石必明. 深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J]. 煤炭学报,2010,35(12):2073-2081.

    YAO Xiangrong,CHENG Gonglin,SHI Biming. Analysis on gas extraction drilling instability and control method of pore-forming in deep surrounding-rock with weak structure[J]. Journal of China Coal Society,2010,35(12):2073-2081.
    [10]
    叶高榜. 内支撑护孔管提高瓦斯抽采钻孔稳定性技术及应用研究[D]. 徐州:中国矿业大学,2017.

    YE Gaobang. Study and application on improving the stability of gas drainage drilling by high strength inner support pipe[D]. Xuzhou:China University of Mining and Technology,2017.
    [11]
    孟晓红. 松软煤层瓦斯抽放钻孔塌孔机理及改进措施研究[D]. 太原:太原理工大学,2016.

    MENG Xiaohong. Study on mechanism of borehole collapse and improvement measures of gas drainage borehole in soft coal seam[D]. Taiyuan:Taiyuan University of Technology,2016.
    [12]
    张金宝. 高位定向长钻孔水力输送对接筛管护孔技术研究[J/OL]. 煤炭科学技术:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240321.1542.001.html.

    ZHANG Jinbao. Research on hole protection technology of screen pipe for hydraulic transportation and automatic butt joint in high position directional borehole[J/OL]. Coal Science and Technology:1-11[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240321.1542.001.html.
    [13]
    李润泽,刘飞. 瓦斯抽采钻孔全孔段筛管护孔工艺技术研究[J]. 能源技术与管理,2023,48(3):30-32. doi: 10.3969/j.issn.1672-9943.2023.03.009

    LI Runze,LIU Fei. Study on full-hole slotting and pipe screen hole protection technology for gas extraction borehole[J]. Energy Technology and Management,2023,48(3):30-32. doi: 10.3969/j.issn.1672-9943.2023.03.009
    [14]
    陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79.

    CHEN Chao,CHEN Tianzhu,ZHANG Majun,et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79.
    [15]
    张鹏,秦政,李峰. 松软煤层大孔径瓦斯抽采钻孔护孔技术研究[J]. 煤炭与化工,2021,44(3):92-95.

    ZHANG Peng,QIN Zheng,LI Feng. Study on hole protection technology of large diameter gas extraction boreholes in loose and soft coal seams[J]. Coal and Chemical Industry,2021,44(3):92-95.
    [16]
    靖洪文,孟庆彬,朱俊福,等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报,2020,37(3):429-442.

    JING Hongwen,MENG Qingbin,ZHU Junfu,et al. Theoretical and technical progress of stability control of broken rock zone of deep roadway surrounding rock[J]. Journal of Mining & Safety Engineering,2020,37(3):429-442.
    [17]
    傅航,马宏发,宋彦琦. 深部硐室群巷道围岩变形机理及控制技术研究[J]. 煤炭工程,2021,53(12):49-54.

    FU Hang,MA Hongfa,SONG Yanqi. Mechanism and control of surrounding rock deformation of deep chamber group roadway[J]. Coal Engineering,2021,53(12):49-54.
    [18]
    苏士龙,高海海,周康乐. 基于统一强度理论的巷道围岩松动圈计算方法[J]. 科学技术与工程,2020,20(27):11045-11050. doi: 10.3969/j.issn.1671-1815.2020.27.010

    SU Shilong,GAO Haihai,ZHOU Kangle. Calculation method of roadway surrounding rock loose circle based on unified strength theory[J]. Science Technology and Engineering,2020,20(27):11045-11050. doi: 10.3969/j.issn.1671-1815.2020.27.010
    [19]
    陈梁,茅献彪,李明,等. 基于Drucker−Prager准则的深部巷道破裂围岩弹塑性分析[J]. 煤炭学报,2017,42(2):484-491.

    CHEN Liang,MAO Xianbiao,LI Ming,et al. Elastoplastic analysis of cracked surrounding rock in deep roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society,2017,42(2):484-491.
    [20]
    范文,俞茂宏,陈立伟,等. 考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J]. 岩石力学与工程学报,2004,23(19):3213-3220.

    FAN Wen,YU Maohong,CHEN Liwei,et al. Unified elastoplastic solution for surrounding rocks of openings with consideration of material dilatancy and softening[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3213-3220.
    [21]
    郝宪杰,袁亮,卢志国,等. 考虑煤体非线性弹性力学行为的弹塑性本构模型[J]. 煤炭学报,2017,42(4):896-901.

    HAO Xianjie,YUAN Liang,LU Zhiguo,et al. An elastic-plastic-soften constitutive model of coal considering its nonlinear elastic mechanical behavior[J]. Journal of China Coal Society,2017,42(4):896-901.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (72) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return