Citation: | WU Jiangwei, NAN Bingfei. Method for recognizing coal flow status of scraper conveyor in working face[J]. Journal of Mine Automation,2023,49(11):60-66. doi: 10.13272/j.issn.1671-251x.2023080101 |
[1] |
李纪栋,蒲绍宁,翟超,等. 基于视频识别的带式输送机煤量检测与自动调速系统[J]. 煤炭科学与技术,2017,45(8):212-216.
LI Jidong,PU Shaoning,ZHAI Chao,et al. Coal quantity detection and automatic speed regulation system of belt conveyor based on video identification[J]. Coal Science and Technology,2017,45(8):212-216.
|
[2] |
李瑶,王义涵. 带式输送机煤流量自适应检测方法[J]. 工矿自动化,2020,46(6):98-102.
LI Yao,WANG Yihan. Adaptive coal flow detection method of belt conveyor[J]. Industry and Mine Automation,2020,46(6):98-102.
|
[3] |
李学晖. 基于机器视觉和深度学习的带式输送机煤量识别方法研究[D]. 邯郸:河北工程大学,2022.
LI Xuehui. Research on coal quantity identification method of belt conveyor based on machine vision and deep learning[D]. Handan:Hebei University of Engineering,2022.
|
[4] |
汪心悦,乔铁柱,庞宇松,等. 基于TOF深度图像修复的输送带煤流检测方法[J]. 工矿自动化,2022,48(1):40-44,63.
WANG Xinyue,QIAO Tiezhu,PANG Yusong,et al. Coal flow detection method for conveyor belt based on TOF depth image restoration[J]. Industry and Mine Automation,2022,48(1):40-44,63.
|
[5] |
陈湘源. 基于超声波的带式输送机多点煤流量监测系统设计[J]. 工矿自动化,2017,43(2):75-78.
CHEN Xiangyuan. Design of multipoint coal flow monitoring system of belt conveyor based on ultrasonic[J]. Industry of Mine Automation,2017,43(2):75-78.
|
[6] |
郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统[J]. 工矿自动化,2023,49(4):120-127.
HAO Hongtao,WANG Kai,DING Wenjie. A dynamic coal quantity detection system for conveyor belt based on ultrasonic array[J]. Journal of Mine Automation,2023,49(4):120-127.
|
[7] |
郭伟东,李明,亢俊明,等. 基于机器视觉的矿井输煤系统优化节能控制[J]. 工矿自动化,2020,46(10):69-75.
GUO Weidong,LI Ming,KANG Junming,et al. Optimal energy saving control of mine coal transportation system based on machine vision[J]. Industry and Mine Automation,2020,46(10):69-75.
|
[8] |
BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[9] |
HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision,Venice,2017:2961-2969.
|
[10] |
RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]. International Conference on Medical image Computing and Computer-Assisted Intervention,Munich,2015:234-241.
|
[11] |
CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. [2023-11-19]. https://arxiv.org/abs/1706.05587.
|
[12] |
CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
|
[13] |
CHEN L C,ZHU Yukun,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision,Munich,2018:801-818.
|
[14] |
CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition,Hawaii,2017:1251-1258.
|
[15] |
WANG Limin,XIONG Yuanjun,WANG Zhe,et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(11):2740-2755. doi: 10.1109/TPAMI.2018.2868668
|
[16] |
LIN Ji,GAN Chuang,HAN Song. TSM:temporal shift module for efficient video understanding[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:7083-7093.
|
[17] |
FEICHTENHOFER C,FAN Haoqi,MALIK J,et al. SlowFast networks for video recognition[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:6202-6211.
|
[18] |
CARREIRA J,ZISSERMAN A. Quo vadis,action recognition? a new model and the kinetics dataset[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:6299-6308.
|
[19] |
TRAN D,WANG Heng,TORRESANI L,et al. A closer look at spatiotemporal convolutions for action recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6450-6459.
|
[20] |
TRAN D,BOURDEV L,FERGUS R,et al. Learning spatiotemporal features with 3D convolutional networks[C]. IEEE International Conference on Computer Vision,Santiago,2015:4489-4497.
|
[21] |
BERTASIUS G,WANG Heng,TORRESANI L. Is space-time attention all you need for video understanding?[C]. International Conference on Machine Learning,Vienna,2021:813-824.
|