Citation: | QIN Yulong, CHENG Jiming, REN Yige, et al. Large coal detection for belt conveyors based on improved YOLOv5[J]. Journal of Mine Automation,2024,50(2):57-62, 71. doi: 10.13272/j.issn.1671-251x.2023080096 |
[1] |
WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A big coal block alarm detection method for scraper conveyor based on YOLO-BS[J]. Sensors,2022,22(23). DOI: 10.3390/s22239052.
|
[2] |
黄燕,胡俊. 一种煤炭智能检测辅助装置的研究与设计[J]. 中国检验检测,2023,31(2):23-24.
HUANG Yan,HU Jun. Research and design of an intelligent auxiliary device for coal detection[J]. China Inspection Body & Laboratory,2023,31(2):23-24.
|
[3] |
张渤,谢金辰,张后斌. 矿井下输送带大块物体检测[J]. 煤炭技术,2021,40(4):154-156.
ZHANG Bo,XIE Jinchen,ZHANG Houbin. Detection of large objects in transportation belt under mine[J]. Coal Technology, 2021,40(4):154-156.
|
[4] |
王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.
WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
|
[5] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
|
[6] |
杜京义,郝乐,王悦阳,等. 一种煤矿井下输煤大块物检测方法[J]. 工矿自动化,2020,46(5):63-68.
DU Jingyi,HAO Le,WANG Yueyang,et al. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation,2020,46(5):63-68.
|
[7] |
叶鸥,窦晓熠,付燕,等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化,2021,47(12):75-80.
YE Ou,DOU Xiaoyi,FU Yan,et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation,2021,47(12):75-80.
|
[8] |
沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.
SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
|
[9] |
张旭辉,闫建星,张超,等. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别[J]. 工矿自动化,2022,48(6):77-86,117.
ZHANG Xuhui,YAN Jianxing,ZHANG Chao,et al. Coal block abnormal behavior identification based on improved YOLOv5s+DeepSORT[J]. Journal of Mine Automation,2022,48(6):77-86,117.
|
[10] |
高凯,董立红,邓凡. 基于递归门控卷积和上下文注意力的煤块检测算法[J]. 矿业研究与开发,2023,43(6):183-190.
GAO Kai,DONG Lihong,DENG Fan. Coal block detection algorithm based on recursive gated convolution and contextual attention[J]. Mining Research and Development,2023,43(6):183-190.
|
[11] |
寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649.
KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649.
|
[12] |
DENG Jun,XUAN Xiaojing,WANG Weifeng,et al. A review of research on object detection based on deep learning[J]. Journal of Physics Conference Series,2020,1684(1). DOI: 10.1088/1742-6596/1684/1/012028.
|
[13] |
樊红卫,刘金鹏,曹现刚,等. 低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法[J/OL]. 煤炭学报:1-12[2023-08-22].https://doi.org/10.13225/j.cnki.jccs.2023.0707.
FAN Hongwei,LIU Jinpeng,CAO Xiangang,et al. Multi-scale target intelligent detection method for coal,foreign object and early damage of conveyor belt surface under low illumination and dust fog[J/OL]. Journal of China Coal Society:1-12[2023-08-22]. https://doi.org/10.13225/j.cnki.jccs.2023.0707.
|
[14] |
卢才武,闫雪颂,刘力,等. 一种改进的无锚框式金属矿带式输送机异物检测方法[J]. 采矿技术,2022,22(1):150-154,162.
LU Caiwu,YAN Xuesong,LIU Li,et al. An improved foreign object detection method for anchorless frame metal belt conveyor[J]. Mining Technology,2022,22(1):150-154,162.
|
[15] |
郭永存,张勇,李飞,等. 嵌入空洞卷积和批归一化模块的智能煤矸识别算法[J]. 矿业安全与环保,2022,49(3):45-50.
GUO Yongcun,ZHANG Yong,LI Fei,et al. Intelligent coal and gangue identification algorithm embedded in dilated convolution and batch normalization module[J]. Mining Safety & Environmental Protection,2022,49(3):45-50.
|
[16] |
WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11531-11539.
|
[17] |
何乐,李忠伟,罗偲,等. 基于空洞卷积与双注意力机制的红外与可见光图像融合[J]. 红外技术,2023,45(7):732-738.
HE Le,LI Zhongwei,LUO Cai,et al. Infrared and visible image fusion based on dilated convolution and dual attention mechanism[J]. Infrared Technology,2023,45(7):732-738.
|
[18] |
汤翔中,高丙朋. 融合注意力空洞卷积和Transformer的矿石图像分割[J]. 科学技术与工程,2023,23(16):6974-6982. doi: 10.12404/j.issn.1671-1815.2023.23.16.06974
TANG Xiangzhong,GAO Bingpeng. Ore image segmentation based on attention hole convolution and transformer[J]. Science Technology and Engineering,2023,23(16):6974-6982. doi: 10.12404/j.issn.1671-1815.2023.23.16.06974
|
[19] |
王渊,郭卫,张传伟,等. 融合注意力机制和先验知识的刮板输送机异常煤块检测[J]. 西安科技大学学报,2023,43(1):192-200.
WANG Yuan,GUO Wei,ZHANG Chuanwei,et al. Detection of abnormal coal block in scraper conveyor integrating attention mechanism and prior knowledge[J]. Journal of Xi'an University of Science and Technology,2023,43(1):192-200.
|
[20] |
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems,Long Beach,2017:6000-6010.
|
[21] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
|