Citation: | LI Gang, ZHANG Yabing, YANG Qinghe, et al. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation,2023,49(11):84-91. doi: 10.13272/j.issn.1671-251x.2023080093 |
[1] |
张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659-2671.
ZHANG Yanbo,XU Yuedong,LIU Xiangxin,et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT[J]. Rock and Soil Mechanics,2021,42(10):2659-2671.
|
[2] |
ZHAO Yusong,GAO Yongtao,WU Shuchuan. Influence of different concealment conditions of parallel double flaws on mechanical properties and failure characteristics of brittle rock under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,109(2). DOI: 10.1016/j.tafmec.2020.102751.
|
[3] |
杨琪,于岩斌,崔文亭,等. 单轴压缩下煤岩细观结构参数表征及演化规律[J]. 煤炭科学技术,2023,51(4):88-95.
YANG Qi,YU Yanbin,CUI Wenting,et al. Fracture evolution of coal under uniaxial compression based on X-ray microscopic imaging[J]. Coal Science and Technology,2023,51(4):88-95.
|
[4] |
李文帅,王连国,陆银龙,等. 真三轴条件下砂岩强度、变形及破坏特征试验研究[J]. 采矿与安全工程学报,2019,36(1):191-197. doi: 10.13545/j.cnki.jmse.2019.01.025
LI Wenshuai,WANG Lianguo,LU Yinlong,et al. Experimental investigation on the strength,deformation and failure characteristics of sandstone under true triaxial compression[J]. Journal of Mining & Safety Engineering,2019,36(1):191-197. doi: 10.13545/j.cnki.jmse.2019.01.025
|
[5] |
张廷蓉,滕奇志,李征骥,等. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版),2018,52(7):1294-1301.
ZHANG Tingrong,TENG Qizhi,LI Zhengji,et al. Super-resolution reconstruction for three-dimensional core CT image[J]. Journal of Zhejiang University(Engineering Science),2018,52(7):1294-1301.
|
[6] |
ZHU Shuyuan,ZENG Bing,ZENG Liaoyuan,et al. Image interpolation based on non-local geometric similarities and directional gradients[J]. IEEE Transactions on Multimedia,2016,18(9):1707-1719. doi: 10.1109/TMM.2016.2593039
|
[7] |
PAPYAN V,ELAD M. Multi-scale patch-based image restoration[J]. IEEE Transactions on Image Processing,2016,25(1):249-261. doi: 10.1109/TIP.2015.2499698
|
[8] |
DONG Chao,LOY C C,TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision,Amsterdam,2016:391-407.
|
[9] |
WANG Yingda,ARMSTRONG R T,MOSTAGHIMI P,et al. Enhancing resolution of digital rock images with super resolution convolutional neural networks[J]. Journal of Petroleum Science and Engineering,2019,182. DOI: 10.1016/j.petrol.2019.106261.
|
[10] |
WANG Yukai,TENG Qizhi,HE Xiaohai,et al. CT-image of rock samples super resolution using 3D convolutional neural network[J]. Computers & Geosciences,2019,133. DOI: 10.1016/j.cageo.2019.104314.
|
[11] |
DONG Chao,LOY C C,HE Kaiming,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
|
[12] |
LEDIG C,THEIS L,HUSZAR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. IEEE Conference on Computer Vision and Pattern Recognition,New York,2017:4681-4690.
|
[13] |
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[J]. Communications of the ACM,2014,63(11):139-144.
|
[14] |
WANG Xiantao,YU Ke,WU Shixiang,et al. Esrgan:enhanced super-resolution generative adversarial networks[C]. European Conference on Computer Vision Workshops,Munich,2019:63-79.
|
[15] |
辛元雪,朱凤婷,史朋飞,等. 基于改进增强型超分辨率生成对抗网络的图像超分辨率重建算法[J]. 激光与光电子学进展,2022,59(4):381-391.
XIN Yuanxue,ZHU Fengting,SHI Pengfei,et al. Super-resolution reconstruction algorithm of images based on improved enhanced super-resolution generative adversarial network[J]. Laser & Optoelectronics Progress,2022,59(4):381-391.
|
[16] |
LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops,Honolulu,2017:1132-1140.
|
[17] |
WANG Xintao,XIE Liangbin,DONG Chao,et al. Real-ESRGAN:training real-world blind super-resolution with pure synthetic data[C]. IEEE/CVF International Conference on Computer Vision Workshops,Montreal,2021:1905-1914.
|
[18] |
方玉明,眭相杰,鄢杰斌,等. 无参考图像质量评价研究进展[J]. 中国图象图形学报,2021,26(2):265-286. doi: 10.11834/jig.200274
FANG Yuming,SUI Xiangjie,YAN Jiebin,et al. Progress in no-reference image quality assessment[J]. Journal of Image and Graphics,2021,26(2):265-286. doi: 10.11834/jig.200274
|
[19] |
IOFFE,S,SZEGEDY,C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning,Lille,2015:448-456.
|
[20] |
WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
|
[21] |
贾洁. 基于生成对抗网络的人脸超分辨率重建及识别[D]. 成都:电子科技大学,2018.
JIA Jie. Face super-resolution reconstruction based on generative adversarial nets and face recognition[D]. Chengdu:University of Electronic Science and Technology,2018.
|
[22] |
朱新山,姚思如,孙彪,等. 图像质量评价:融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报,2018,50(5):121-128. doi: 10.11918/j.issn.0367-6234.20180517
ZHU Xinshan,YAO Siru,SUN Biao,et al. Image quality assessment:combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology,2018,50(5):121-128. doi: 10.11918/j.issn.0367-6234.20180517
|
[23] |
雷健,潘保芝,张丽华. 基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J]. 地球物理学进展,2018,33(2):653-660. doi: 10.6038/pg2018BB0108
LEI Jian,PAN Baozhi,ZHANG Lihua. Advance of microscopic flow simulation based on digital cores and pore network[J]. Progress in Geophysics,2018,33(2):653-660. doi: 10.6038/pg2018BB0108
|