Citation: | ZHANG Jie, MIAO Xiaoran, ZHAO Zuopeng, et al. Local feature-guided label smoothing and optimization for re-identification of underground personnel with weak features[J]. Journal of Mine Automation,2024,50(2):83-89. doi: 10.13272/j.issn.1671-251x.2023080092 |
[1] |
易能. 基于深度学习的双目视觉煤矿井下人员定位研究[D]. 徐州:中国矿业大学,2023.
YI Neng. Research on binocular vision underground personnel positioning in coal mine based on deep learning[D]. Xuzhou:China University of Mining and Technology,2023.
|
[2] |
侯瑞兵,常虹,马丙鹏,等. 基于时序多尺度互补特征的视频行人重识别[J]. 计算机学报,2023,46(1):31-50.
HOU Ruibing,CHANG Hong,MA Bingpeng,et al. Temporal multi-scale complementary feature for video person re-identification[J]. Chinese Journal of Computers,2023,46(1):31-50.
|
[3] |
王素玉,肖塞. 行人重识别研究综述[J]. 北京工业大学学报,2022,48(10):1100-1112.
WANG Suyu,XIAO Sai. Review of person re-identification[J]. Journal of Beijing University of Technology,2022,48(10):1100-1112.
|
[4] |
DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,2005:886-893.
|
[5] |
LOWE D G. Object recognition from local scale-invariant features[C]. IEEE International Conference on Computer Vision,Kerkyra,1999:1150-1157.
|
[6] |
LIAO Shengcai,HU Yang,ZHU Xiangyu,et al. Person re-identification by local maximal occurrence representation and metric learning[C]. IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:2197-2206.
|
[7] |
MARTIN K,HIRZER M,WOHLHART P,et al. Large scale metric learning from equivalence constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition,Providence,2012:2288-2295.
|
[8] |
YI Dong,LEI Zhen,LIAO Shengcai,et al. Deep metric learning for person re-identification[C]. The 22nd International Conference on Pattern Recognition,Stockholm,2014:34-39.
|
[9] |
CHEN Yanbei,ZHU Xiatian,GONG Shaogang. Person re-identification by deep learning multi-scale representations[C]. IEEE International Conference on Computer Vision Workshops,Venice,2017:2590-2600.
|
[10] |
LUO Hao,GU Youzhi,LIAO Xingyu,et al. Bag of tricks and a strong baseline for deep person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition,Long Beach,2019:580-587.
|
[11] |
YE Mang,SHEN Jianbing,LIN Gaojie,et al. Deep learning for person re-identification:a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(6):2872-2893. doi: 10.1109/TPAMI.2021.3054775
|
[12] |
孙彦景,魏力,张年龙,等. 联合DD−GAN和全局特征的井下人员重识别方法[J]. 西安电子科技大学学报,2021,48(5):201-211.
SUN Yanjing,WEI Li,ZHANG Nianlong,et al. Person re-identification method combining the DD-GAN and global feature in a coal mine[J]. Journal of Xidian University,2021,48(5):201-211.
|
[13] |
丁嘉婕. 基于质量增强和注意力机制的井下行人重识别算法[D]. 徐州:中国矿业大学,2022.
DING Jiajie. Mine person re-identification algorithm based on quality enhancement and attention mechanism[D]. Xuzhou:China University of Mining and Technology,2022.
|
[14] |
张立亚,王寓,郝博南. 基于改进度量学习的煤矿井下行人重识别方法研究[J]. 工矿自动化,2023,49(9):84-89,166.
ZHANG Liya,WANG Yu,HAO Bonan. Research on personnel re-recognition method in coal mine underground based on improved metric learning[J]. Journal of Mine Automation,2023,49(9):84-89,166.
|
[15] |
熊炜,杨荻椿,熊子婕,等. 基于全局特征拼接的行人重识别算法研究[J]. 计算机应用研究,2021,38(1):316-320.
XIONG Wei,YANG Dichun,XIONG Zijie,et al. Person re-identification algorithm based on global feature stitching[J]. Application Research of Computers,2021,38(1):316-320.
|
[16] |
PEREYRA G,TUCKER G,CHOROWSKI J,et al. Regularizing neural networks by penalizing confident output distributions[EB/OL]. [2023-08-20]. http://arxiv.org/abs/1701.06548.
|
[17] |
DENG Jia,DONG Wei,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]. IEEE Conference on Computer Vision and Pattern Recognition,Miami,2009:242-252.
|
[18] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
|
[19] |
SHORTEN C,KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019,6(1):532-540.
|
[20] |
ZHANG Zijun. Improved Adam optimizer for deep neural networks[C]. IEEE/ACM 26th International Symposium on Quality of Service,Banff,2018:1320-1331.
|
[21] |
GONG Yunpeng,HUANG Liqing,CHEN Lifei. Eliminate deviation with deviation for data augmentation and a general multi-modal data learning method[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2101.08533v5.
|
[22] |
CHEN Weihua,XU Xianzhe,JIA Jian,et al. Beyond appearance:a semantic controllable self-supervised learning framework for human-centric visual tasks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:15050-15061.
|
[23] |
SOMERS V,VLEESCHOUWER C D. Body part-based representation learning for occluded person re-identification[C]. IEEE/CVF Winter Conference on Applications of Computer Vision,Waikoloa,2023:1613-1623.
|
[24] |
CI Yuanzheng,WANG Yizhou,CHEN Meilin,et al. UniHCP:a unified model for human-centric perceptions[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:17840-17852.
|
[25] |
WANG Guangcong,LAI Jianhuang,HUANG Peigen,et al. Spatial-temporal person re-identification[C]. AAAI Conference on Artificial Intelligence,Honolulu,2019:8933-8940.
|
[26] |
ZANG Xianghao,LI Ge,GAO Wei,et al. Learning to disentangle scenes for person re-identification[J]. Image and Vision Computing,2021,116. DOI: 10.1016/j.imavis.2021.104330.
|