Citation: | MA Tian, LI Fanhui, YANG Jiayi, et al. Real time segmentation method for underground track area based on improved STDC[J]. Journal of Mine Automation,2023,49(11):107-114. doi: 10.13272/j.issn.1671-251x.2023080076 |
[1] |
王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152
WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152
|
[2] |
胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140. doi: 10.13272/j.issn.1671-251x.18115
HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140. doi: 10.13272/j.issn.1671-251x.18115
|
[3] |
ASSIDIQ A A,KHALIFA O O,ISLAM M R,et al. Real time lane detection for autonomous vehicles[C]. International Conference on Computer and Communication Engineering,Kuala Lumpur,2008:82-88.
|
[4] |
FATIH K,YUSUF S A. Vision-based railroad track extraction using dynamic programming [C]. International IEEE Conference on Intelligent Transportation Systems,Saint Louis,2009:42-47.
|
[5] |
谢昭莉,王壬,张德全. 基于图像识别的井下机车轨道检测方法[J]. 计算机工程,2012,38(14):147-149.
XIE Zhaoli,WANG Ren,ZHANG Dequan. Track detection method of underground locomotive based on image recognition[J]. Computer Engineering,2012,38(14):147-149.
|
[6] |
李晓明,郎文辉,马忠磊,等. 基于图像处理的井下机车行人检测技术[J]. 煤矿机械,2017,38(4):167-170. doi: 10.13436/j.mkjx.201704059
LI Xiaoming,LANG Wenhui,MA Zhonglei,et al. Pedestrian detection technology for mine locomotive based on image processing[J]. Coal Mine Machinery,2017,38(4):167-170. doi: 10.13436/j.mkjx.201704059
|
[7] |
王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. doi: 10.13225/j.cnki.jccs.2018.2041
WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357. doi: 10.13225/j.cnki.jccs.2018.2041
|
[8] |
韩江洪,乔晓敏,卫星,等. 基于空间卷积神经网络的井下轨道检测方法[J]. 电子测量与仪器学报,2018,32(12):34-43. doi: 10.13382/j.jemi.2018.12.005
HAN Jianghong,QIAO Xiaomin,WEI Xing,et al. Downhole track detection method based on spatial convolutional neural network[J]. Journal of Electronic Measurement and Instrumentation,2018,32(12):34-43. doi: 10.13382/j.jemi.2018.12.005
|
[9] |
卫星,刘邵凡,杨国强,等. 基于改进双边分割网络的井下轨道检测算法[J]. 计算机应用研究,2020,37(增刊1):348-350.
WEI Xing,LIU Shaofan,YANG Guoqiang,et al. Track detection algorithm via modified bilateral segmentation network[J]. Application Research of Computers,2020,37(S1):348-350.
|
[10] |
鲍新平,汪涛. 基于AI视觉智能识别的煤矿斜井轨道运输安全管理系统[J]. 工矿自动化,2023,49(增刊1):72-75.
BAO Xinping,WANG Tao. A safety management system for coal mine inclined shaft rail transportation based on intelligent AI visual recognition[J]. Journal of Mine Automation,2023,49(S1):72-75.
|
[11] |
杨荣锦,张秀峰,龚莉娜,等. 基于深度学习的车道线检测方法综述[J]. 大连民族大学学报,2021,23(1):40-44. doi: 10.3969/j.issn.1009-315X.2021.01.009
YANG Rongjin,ZHANG Xiufeng,GONG Li'na,et al. Survey of lane detection methods based on deep learning[J]. Journal of Dalian Minzu University,2021,23(1):40-44. doi: 10.3969/j.issn.1009-315X.2021.01.009
|
[12] |
周华平,郑锐. 基于改进BiSeNet的煤矿井下轨道检测算法[J]. 湖北民族大学学报(自然科学版),2021,39(4):398-403.
ZHOU Huaping,ZHENG Rui. Underground rail detection algorithm based on improved BiSeNet[J]. Journal of Hubei Minzu University(Natural Science Edition),2021,39(4):398-403.
|
[13] |
YU Changqian,WANG Jingbo,PENG Chao,et al. BiSeNet:bilateral segmentation network for real-time semantic segmentation[C]. European Conference on Computer Vision,Berlin,2018:334-349.
|
[14] |
YU Changqian,GAO Changxin,WANG Jingbo,et al. BiSeNet V2:bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision,2021,129(11). DOI: 10.1007/S11263-021-01515-2.
|
[15] |
FAN Mingyuan,LAI Shenqi,HUANG Junshi,et al. Rethinking bisenet for real-time semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:9716-9725.
|
[16] |
ZHU Xizhou,CHENG Dazhi,ZHANG Zheng,et al. An empirical study of spatial attention mechanisms in deep networks[C]. IEEE/CVF International Conference on Computer Vision,Piscataway,2019:6688-6697.
|
[17] |
HAO Yuying,LIU Yi,CHEN Yizhou,et al. EISeg:an efficient interactive segmentation annotation tool based on paddlepaddle[C]. Computer Vision and Pattern Recognition,New Orleans,2022. DOI: 10.48550/arXiv.2210.08788.
|
[18] |
PASZKE A,CHAURASIA A,KIM S,et al. Enet:a deep neural network architecture for real-time semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016. DOI: 10.48550/arXiv.1606.02147.
|
[19] |
BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(12):2481-2495.
|
[20] |
CHEN L C,ZHU Yukun,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision,Munich,2018:801-818.
|
[21] |
LI Xiangtai,YOU Ansheng,ZHU Zhen,et al. Semantic flow for fast and accurate scene parsing[C]. European Conference on Computer Vision,Berlin,2020:775-793.
|