Citation: | ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation,2023,49(11):53-59. doi: 10.13272/j.issn.1671-251x.2023080046 |
[1] |
王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034
WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41. doi: 10.13225/j.cnki.jccs.2018.5034
|
[2] |
鲍久圣,章全利,葛世荣,等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报,2023,48(2):1085-1098.
BAO Jiusheng,ZHANG Quanli,GE Shirong,et al. Basic research and application practice of unmanned auxiliary transportation system in coal mine[J]. Journal of China Coal Society,2023,48(2):1085-1098.
|
[3] |
杨清翔,向秀华,孟斌,等. 一种煤矿带式输送机故障诊断方法[J]. 工矿自动化,2017,43(12):48-52. doi: 10.13272/j.issn.1671-251x.2017.12.010
YANG Qingxiang,XIANG Xiuhua,MENG Bin,et al. A fault diagnosis method of coal mine belt conveyor[J]. Industry and Mine Automation,2017,43(12):48-52. doi: 10.13272/j.issn.1671-251x.2017.12.010
|
[4] |
孙继平,钱晓红. 煤矿事故与应急救援技术装备[J]. 工矿自动化,2016,42(10):1-5. doi: 10.13272/j.issn.1671-251x.2016.10.001
SUN Jiping,QIAN Xiaohong. Coal mine accident and emergency rescue technology and equipment[J]. Industry and Mine Automation,2016,42(10):1-5. doi: 10.13272/j.issn.1671-251x.2016.10.001
|
[5] |
吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州:中国矿业大学,2020.
LYU Zhiqiang. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D]. Xuzhou:China University of Mining and Technology,2020.
|
[6] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[7] |
刘硕. 基于生成式对抗网络的异常检测研究[D]. 北京:北方工业大学,2022.
LIU Shuo. Research on anomaly detection based on generative adversarial network[D]. Beijing:North China University of Technology,2022.
|
[8] |
任国强,韩洪勇,李成江,等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.
REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
|
[9] |
杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
|
[10] |
吴守鹏. 基于机器视觉的运煤皮带异物识别方法研究[D]. 徐州:中国矿业大学,2019.
WU Shoupeng. Research on detection method of foreign object on coal conveyor belt based on computer vision[D]. Xuzhou:China University of Mining and Technology,2019.
|
[11] |
卢学明,于在川,许升起. 基于深度生成模型的煤矿运输皮带异物检测[J]. 计算机系统应用,2022,31(5):358-363.
LU Xueming,YU Zaichuan,XU Shengqi. Foreign object detection of coal mine belt conveyor based on deep generative model[J]. Computer Systems and Applications,2022,31(5):358-363.
|
[12] |
郜振国. 煤矿井下运输异物检测关键技术研究[D]. 徐州:中国矿业大学,2018.
GAO Zhenguo. Study on key technologies of foreign object detection in the coal mine transportation[D]. Xuzhou:China University of Mining and Technology,2018.
|
[13] |
张海明. 基于深度学习的皮带机上的异物识别方法研究[D]. 马鞍山:安徽工业大学,2020.
ZHANG Haiming. Research on method of identifying foreign object on belt conveyor based on deep learning[D]. Ma'anshan:Anhui University of Technology,2020.
|
[14] |
孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.
KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
|
[15] |
吴开兴,张琳,李丽宏. 煤矿井下雾尘图像清晰化算法[J]. 工矿自动化,2018,44(3):70-75. doi: 10.13272/j.issn.1671-251x.2017100078
WU Kaixing,ZHANG Lin,LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Industry and Mine Automation,2018,44(3):70-75. doi: 10.13272/j.issn.1671-251x.2017100078
|
[16] |
GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1406.2661.
|
[17] |
RADFORD A,METZ L,CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1511.06434v1.
|
[18] |
AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1805.06725.
|
[19] |
郑学召,童鑫,郭军,等. 煤矿智能监测与预警技术研究现状与发展趋势[J]. 工矿自动化,2020,46(6):35-40. doi: 10.13272/j.issn.1671-251x.17530
ZHENG Xuezhao,TONG Xin,GUO Jun,et al. Research status and development trend of intelligent monitoring and early warning technology in coal mine[J]. Industry and Mine Automation,2020,46(6):35-40. doi: 10.13272/j.issn.1671-251x.17530
|
[20] |
李敬兆,秦晓伟,汪磊. 基于边云协同框架的煤矿井下实时视频处理系统[J]. 工矿自动化,2021,47(12):1-7. doi: 10.13272/j.issn.1671-251x.2021070023
LI Jingzhao,QIN Xiaowei,WANG Lei. Real-time video processing system in coal mine based on edge-cloud collaborative framework[J]. Industry and Mine Automation,2021,47(12):1-7. doi: 10.13272/j.issn.1671-251x.2021070023
|
[21] |
SIFRE L,MALLAT S. Rigid-motion scattering for texture classification[EB/OL]. [2023-07-10]. https://arxiv.org/abs/1403.1687.
|