Citation: | DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154. doi: 10.13272/j.issn.1671-251x.2023070085 |
[1] |
张旭辉,潘格格,郭欢欢,等. 基于深度迁移学习的采煤机摇臂部滚动轴承故障诊断方法[J]. 煤炭科学技术,2022,50(4):256-263.
ZHANG Xuhui,PAN Gege,GUO Huanhuan,et al. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. Coal Science and Technology,2022,50(4):256-263.
|
[2] |
郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.
GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26.
|
[3] |
ZHANG Xiaochen,CONG Yiwen,YUAN Zhe,et al. Early fault detection method of rolling bearing based on MCNN and GRU network with an attention mechanism[J]. Shock and Vibration,2021. DOI: 10.1155/2021/6660243.
|
[4] |
ZHENG Zhi,FU Jiuman,LU Chuanqi,et al. Research on rolling bearing fault diagnosis of small dataset based on a new optimal transfer learning network[J]. Measurement,2021,177. DOI: 10.1016/J.MEASUREMENT.2021.109285.
|
[5] |
史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.
SHI Zhiyuan,TENG Hu,MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.
|
[6] |
姚齐水,别帅帅,余江鸿,等. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J]. 振动工程学报,2022,35(4):949-957.
YAO Qishui,BIE Shuaishuai,YU Jianghong,et al. A bearing fault diagnosis method combining improved inception V2 module and CBAM[J]. Journal of Vibration Engineering,2022,35(4):949-957.
|
[7] |
SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://arxiv.org/abs/1710.09829.
|
[8] |
王超群,李彬彬,焦斌. 基于门控循环单元胶囊网络的滚动轴承故障诊断[J]. 轴承,2021(5):56-62.
WANG Chaoqun,LI Binbin,JIAO Bin. Fault diagnosis for rolling bearings based on capsule network of gated recurrent unit[J]. Bearing,2021(5):56-62.
|
[9] |
CHEN Tianyou,WANG Zhihua,YANG Xiang,et al. A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals[J]. Measurement,2019,148. DOI: 10.1016/j.measurement.2019.106857.
|
[10] |
WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi: 10.1109/TIE.2017.2774777
|
[11] |
LIANG Pengfei,DENG Chao,WU Jun,et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J]. Knowledge-Based Systems,2020,198. DOI: 10.1016/j.knosys.2020.105895.
|
[12] |
YAN Jialin,KAN Jiangming,LUO Haifeng. Rolling bearing fault diagnosis based on Markov transition field and residual network[J]. Sensors,2022,22(10). DOI: 10.3390/S22103936.
|
[13] |
WANG Mengjiao,WANG Wenjie,ZHANG Xinan,et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy,2022,24(6). DOI: 10.3390/E24060751.
|
[14] |
姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.
JIANG Jiaguo,GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.
|
[15] |
赵志宏,李春秀,窦广鉴,等. 基于MTF−CNN的轴承故障诊断研究[J]. 振动与冲击,2023,42(2):126-131.
ZHAO Zhihong,LI Chunxiu,DOU Guangjian,et al. Bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2023,42(2):126-131.
|
[16] |
瞿红春,朱伟华,高鹏宇,等. 基于注意力循环胶囊网络的滚动轴承故障诊断[J]. 振动. 测试与诊断,2022,42(6):1108-1114,1243.
QU Hongchun,ZHU Weihua,GAO Pengyu,et al. Fault diagnosis of rolling bearing based on attention recurrent capsule network[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(6):1108-1114,1243.
|
[17] |
PECHYONKIN M. Understanding Hinton's capsule networks. Part 3. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://pechyonkin.me/capsules-3/.
|
[18] |
Bearing Data Center of Case Western Reserve University. Seeded fault test data [EB/OL]. [2023-06-05]. https://engineering.case.edu/bearingdatacenter/.
|
[19] |
LEE J,QIU H,YU G,et al. Bearing data set[EB/OL]. [2023-06-05]. https://data.nasa.gov/download/brfb-gzcv/application%2Fzip.
|
[20] |
ZHANG Wei,PENG Gaoliang,LI Chuanhao,et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017,17(2). DOI: 10.3390/s17020425.
|