Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
DONG Hongtao, TIAN Zijian, HOU Mingshuo, et al. Safety power analysis of metal oscillator structure in mine 5G radiation field[J]. Journal of Mine Automation,2023,49(12):108-113.  doi: 10.13272/j.issn.1671-251x.2023070080
Citation: DONG Hongtao, TIAN Zijian, HOU Mingshuo, et al. Safety power analysis of metal oscillator structure in mine 5G radiation field[J]. Journal of Mine Automation,2023,49(12):108-113.  doi: 10.13272/j.issn.1671-251x.2023070080

Safety power analysis of metal oscillator structure in mine 5G radiation field

doi: 10.13272/j.issn.1671-251x.2023070080
  • Received Date: 2023-07-22
  • Rev Recd Date: 2023-12-06
  • Available Online: 2024-01-03
  • There are flammable and explosive gases such as gas underground in coal mines. The electromagnetic waves radiated by the 5G wireless communication system base station antenna are absorbed by the underground metal structure, generating discharge sparks at the metal structure breakpoint. When the energy of the electric spark reaches the minimum ignition energy of gas, an explosion may occur, which limits the application of 5G technology in coal mines. In order to evaluate the safety of the RF power of 5G wireless communication base stations, the relationship between RF power, maximum radiation field strength, and distance is obtained by analyzing the coupling of electromagnetic waves with metal structures. Using the minimum ignition energy as the safety criterion, it can be concluded that when the receiving power of the antenna load is less than 2.625 W, it can ensure that it will not cause gas explosions. The analysis shows that 700 MHz should be given priority as the 5G working frequency band in coal mines underground. By analyzing the directional coefficient, it is concluded that a symmetrical oscillator antenna metal structure with an arm length to wavelength ratio of 0.65 should be chosen for research. The safe electric field strength of the symmetrical oscillator antenna metal structure is 202.9 V/m, and the minimum safe distance is 0.2 m. The simulation results show that the electric field distribution is extremely uneven in areas less than 0.2 m away from the transmitting antenna. The electric field distribution is relatively even in areas more than 0.2 m away from the transmitting antenna. The minimum radio frequency power that causes a gas explosion in an area greater than 0.2 m from the transmitting antenna is 27.45 W.

     

  • loading
  • [1]
    孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
    [2]
    孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [3]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [4]
    陈晓贝,魏克军. 全球5G研究动态和标准进展[J]. 电信科学,2015,31(5):16-19.

    CHEN Xiaobei,WEI Kejun. Global research and standardization progress of 5G[J]. Telecommunications Science,2015,31(5):16-19.
    [5]
    霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.

    HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.
    [6]
    BS 6656:2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide[S
    [7]
    CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide[S
    [8]
    IEC 60079-0:2017 Explosive atmospheres-Part 0:Equipment-General requirements[S
    [9]
    GB/T 3836.1−2021爆炸性环境 第1部分:设备 通用要求[S

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment-General requirements[S
    [10]
    孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008.

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008.
    [11]
    彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.

    PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547.
    [12]
    刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91.
    [13]
    刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.

    LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.
    [14]
    梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
    [15]
    孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.
    [16]
    张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138.
    [17]
    李褚益. 微波技术与微波电路[M]. 广州:华南理工大学出版社,2007.

    LI Chuyi. Microwave technology and microwave circuits[M]. Guangzhou:South China University of Technology Press,2007.
    [18]
    钟顺时. 天线理论与技术[M]. 2版. 北京:电子工业出版社,2015.

    ZHONG Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing:Publishing House of Electronics Industry,2015.
    [19]
    EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. doi: 10.1049/jiere.1986.0006
    [20]
    GB/T 3836.27−2019爆炸性环境 第27部分 静电危害 试验[S

    GB/T 3836.27-2019 Explosive atmospheres-Part 27:Electrostatic hazards-Test[S
    [21]
    GB/T 3836.4−2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备[S

    GB/T 3836.4-2021 Explosive atmospheres-Part 4:Equipment protection by intrinsic safety "i"[S
    [22]
    工业和信息化部. 工业和信息化部关于调整700 MHz频段频率使用规划的通知[EB/OL]. [2023-06-10].https://www.miit.gov.cn/zwgk/zcwj/wjfb/txy/art/2020/art_4d7d0b8cf92b448e9817eea55efb2ea7.html.

    Ministry of Industry and Information Technology. Notice of the Ministry of Industry and Information Technology on adjusting the use plan of the 700 MHz frequency band[EB/OL]. [2023-06-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/txy/art/2020/art_4d7d0b8cf92b448e9817eea55efb2ea7.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (156) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return