Citation: | ZHANG Hui, SU Guoyong, ZHAO Dongyang. Research on multi object detection in mining face based on FBEC-YOLOv5s[J]. Journal of Mine Automation,2023,49(11):39-45. doi: 10.13272/j.issn.1671-251x.2023060063 |
[1] |
王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12-26. doi: 10.12363/issn.1001-1986.23.02.0062
WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12-26. doi: 10.12363/issn.1001-1986.23.02.0062
|
[2] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197-2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197-2211.
|
[3] |
魏文艳. 综采工作面智能化开采技术发展现状及展望[J]. 煤炭科学技术,2022,50(增刊2):244-253.
WEI Wenyan. Development status and prospect of intelligent mining technology of longwall mining[J]. Coal Science and Technology,2022,50(S2):244-253.
|
[4] |
王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.
WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18.
|
[5] |
ZHANG Kexue,KANG Lei,CHEN Xuexi,et al. A review of intelligent unmanned mining current situation and development trend[J]. Energies,2022,15(2):513. doi: 10.3390/en15020513
|
[6] |
李伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139-145.
LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139-1455.
|
[7] |
程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.
CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
|
[8] |
李章维,胡安顺,王晓飞. 基于视觉的目标检测方法综述[J]. 计算机工程与应用,2020,56(8):1-9. doi: 10.3778/j.issn.1002-8331.2001-0163
LI Zhangwei,HU Anshun,WANG Xiaofei. Survey of vision based object detection methods[J]. Computer Engineering and Applications,2020,56(8):1-9. doi: 10.3778/j.issn.1002-8331.2001-0163
|
[9] |
李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 山东大学学报(理学版),2023,58(9):59-70.
LI Cheng,CHE Wengang,GAO Shengxiang. A object detection algorithm for aerial images[J]. Journal of Shandong University(Natural Science),2023,58(9):59-70.
|
[10] |
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision,Santiago,2015:1440-1448.
|
[11] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
|
[12] |
HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask r-cnn[C]. IEEE International Conference on Computer Vision,Venice,2017:2980-2988.
|
[13] |
杨文斌. 基于Faster−RCNN算法的刮板输送机异物识别技术研究[J]. 煤矿机械,2022,43(11):54-56.
YANG Wenbin. Research on foreign matter recognition technology of scraper conveyor based on Faster-RCNN algorithm[J]. Coal Mine Machinery,2022,43(11):54-56.
|
[14] |
郭永存,童佳乐,王爽. 井下无人驾驶电机车行驶场景中多目标检测研究[J]. 工矿自动化,2022,48(6):56-63.
GUO Yongcun,TONG Jiale,WANG Shuang. Research on multi-object detection in driving scene of underground unmanned electric locomotive[J]. Journal of Mine Automation,2022,48(6):56-633.
|
[15] |
史凌凯,耿毅德,王宏伟,等. 基于改进Mask R−CNN的刮板输送机铁质异物多目标检测[J]. 工矿自动化,2022,48(10):55-61.
SHI Lingkai,GENG Yide,WANG Hongwei,et al. Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN[J]. Journal of Mine Automation,2022,48(10):55-61.
|
[16] |
王彦雅. 基于Two−Stage的目标检测算法综述[J]. 河北省科学院学报,2022,39(2):14-22.
WANG Yanya. Overview of target detection algorithms based on two stage[J]. Journal of the Hebei Academy of Sciences,2022,39(2):14-22.
|
[17] |
唐聪,凌永顺,郑科栋,等. 基于深度学习的多视窗SSD目标检测方法[J]. 红外与激光工程,2018,47(1):302-310.
TANG Cong,LING Yongshun,ZHENG Kedong,et al. Object detection method of multi-view SSD based on deep learning[J]. Infrared and Laser Engineering,2018,47(1):302-310.
|
[18] |
LAW H,DENG Jia. CornerNet:detecting objects aspaired keypoints[J]. International Journal of Computer Vision,2020,128(2):642-656.
|
[19] |
王琳毅,白静,李文静,等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用,2023,59(14):15-29.
WANG Linyi,BAI Jing,LI Wenjing,et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications,2023,59(14):15-29.
|
[20] |
王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.
WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
|
[21] |
杨艺,付泽峰,高有进,等. 基于深度神经网络的综采工作面视频目标检测[J]. 工矿自动化,2022,48(8):33-42.
YANG Yi,FU Zefeng,GAO Youjin,et al. Video object detection of the fully mechanized working face based on deep neural network[J]. Journal of Mine Automation,2022,48(8):33-42.
|
[22] |
郭永存,杨豚,王爽. 基于改进YOLOv4–Tiny的矿井电机车多目标实时检测[J]. 工程科学与技术,2023,55(5):232-241.
GUO Yongcun,YANG Tun,WANG Shuang. Multi-object real-time detection of mine electric locomotive based on improved YOLOv4-Tiny[J]. Advanced Engineering Sciences,2023,55(5):232-241.
|
[23] |
樊红卫,刘金鹏,曹现刚,等. 低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法[J/OL]. 煤炭学报:1-12[2023-08-19]. https://doi.org/10.13225/j.cnki.jccs.2023.0707.
FAN Hongwei,LIU Jinpeng,CAO Xiangang,et al. Multi-scale target intelligent detection method for coal,foreign object and early damage of conveyor belt surface under low illumination and dust fog[J/OL]. Journal of China Coal Society:1-12[2023-08-19]. https://doi.org/10.13225/j.cnki.jccs.2023.0707.
|
[24] |
CHEN Jierun,KAO S,HE Hao,et al. Run,don't walk:chasing higher FLOPS for faster neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:12021-12031.
|
[25] |
TAN Mingxing,PANG Ruoming,LE Q V. Efficientdet:scalable and efficient object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10781-10790.
|
[26] |
LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
|
[27] |
ZHENG Zhaohui,WANG Ping,LIU Wei,et al. Distance-IoU loss:faster and better learning for bounding box regression[C]. AAAI Conference on Artificial Intelligence,New York,2020:12993-13000.
|
[28] |
CHEN Xinlin,LIAN Qingwang,CHEN Xuanlai,et al. Surface crack detection method for coal rock based on improved YOLOv5[J]. Applied Sciences,2022,12(19):9695. doi: 10.3390/app12199695
|
[29] |
YU Jimin,WU Tao,ZHANG Xin,et al. An efficient lightweight SAR ship target detection network with improved regression loss function and enhanced feature information expression[J]. Sensors,2022,22(9):3447. doi: 10.3390/s22093447
|