Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LI Zhongzhong, LIU Qing. Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model[J]. Journal of Mine Automation,2024,50(1):9-16.  doi: 10.13272/j.issn.1671-251x.2023060044
Citation: LI Zhongzhong, LIU Qing. Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model[J]. Journal of Mine Automation,2024,50(1):9-16.  doi: 10.13272/j.issn.1671-251x.2023060044

Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model

doi: 10.13272/j.issn.1671-251x.2023060044
  • Received Date: 2023-06-13
  • Rev Recd Date: 2024-01-15
  • Available Online: 2024-01-31
  • The traditional coal seam cutting path planning predicts the height of the drum through geometric control, planning calculation, and other methods. But there are problems with large data errors in planning and prediction and inability to adapt to changes in geological conditions. In order to solve the above problems, a shearer automatic height adjustment technology based on a cutting roof and floor height prediction model is proposed. Firstly, the factors affecting the height of the cutting roof and floor are analyzed. It is pointed out that the main factors affecting the height of the cutting roof and floor include the fluctuation data of the coal seam, historical cutting data, elevation data of the scraper conveyor, and manual operation records. The above four types of data are fused and processed to establish a cutting roof and floor height prediction algorithm model based on long short term memory (LSTM) model and gray Markov model. The height of the cutting roof and floor is predicted through an algorithmic model. Secondly, based on the height data of the cutting roof and floor, combined with the position and posture and spatial coordinates of the shearer, a geometric model for calculating the height of the drum is established. At the same time, correction is made according to factors such as the sliding amount of the scraper conveyor and whether the addition and subtraction process is carried out. Finally, the height sequence of the roof and floor is converted into a drum height sequence. The cutting roof and floor height is converted into the target height of the shearer drum, which is executed by the shearer to the target height, achieving automatic adjustment of the drum height. The industrial test results show the following points. ① Under the control of automatic height adjustment technology, 90% of the predicted height deviation values of the roof and floor drums are within 10 cm of the actual height. The predicted height of the drums is significantly consistent with the actual height. ② Compared with traditional manual control methods, the number of manual intervention height adjustment times for cutting coal in the middle has decreased from 49 to 21. It indicates that the height prediction model for cutting the roof and floor and the geometric model for calculating the height of the drum are accurate and reasonable, and the automatic height adjustment technology for the shearer drum is feasible.

     

  • loading
  • [1]
    张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109.

    ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109.
    [2]
    谭震,王建文,王宏科,等. 煤矿灾害智能综合防治系统构建及关键技术[J]. 中国煤炭,2022,48(12):68-75.

    TAN Zhen,WANG Jianwen,WANG Hongke,et al. Construction and key technologies of intelligent comprehensive prevention and control system for coal mine disaster[J]. China Coal,2022,48(12):68-75.
    [3]
    张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5.

    ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5.
    [4]
    李浩荡. 减碳背景下煤炭如何直面挑战[N]. 中国煤炭报,2021-04-01(2).

    LI Haodang. How does coal face the challenge in the context of carbon reduction[N]. China Coal News,2021-04-01(2).
    [5]
    王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术,2010,38(1):63-68,106.

    WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J]. Coal Science and Technology,2010,38(1):63-68,106.
    [6]
    赵亦辉,赵友军,周展. 综采工作面采煤机智能化技术研究现状[J]. 工矿自动化,2022,48(2):11-18,28.

    ZHAO Yihui,ZHAO Youjun,ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Industry and Mine Automation,2022,48(2):11-18,28.
    [7]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [8]
    WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. doi: 10.1016/j.ijmst.2018.06.005
    [9]
    任怀伟,巩师鑫,刘新华,等. 煤矿千米深井智能开采关键技术研究与应用[J]. 煤炭科学技术,2021,49(4):149-158.

    REN Huaiwei,GONG Shixin,LIU Xinhua,et al. Research and application on key techniques of intelligent mining for kilo-meter deep coal mine[J]. Coal Science and Technology,2021,49(4):149-158.
    [10]
    王昕. 基于电磁波技术的煤岩识别方法研究[D]. 徐州:中国矿业大学,2017.

    WANG Xin. Study of coal-rock identification method based on electromagnetic wave technology[D]. Xuzhou:China University of Mining and Technology,2017.
    [11]
    杨文萃,邱锦波,张阳,等. 煤岩界面识别的声学建模[J]. 煤炭科学技术,2015,43(3):100-103.

    YANG Wencui,QIU Jinbo,ZHANG Yang,et al. Acoustic modeling of coal-rock interface identification[J]. Coal Science and Technology,2015,43(3):100-103.
    [12]
    孙继平,陈浜. 基于双树复小波域统计建模的煤岩识别方法[J]. 煤炭学报,2016,41(7):1847-1858.

    SUN Jiping,CHEN Bang. An approach to coal-rock recognition via statistical modeling in dual-tree complex wavelet domain[J]. Journal of China Coal Society,2016,41(7):1847-1858.
    [13]
    刘俊利,赵豪杰,李长有. 基于采煤机滚筒截割振动特性的煤岩识别方法[J]. 煤炭科学技术,2013,41(10):93-95,116.

    LIU Junli,ZHAO Haojie,LI Changyou. Coal-rock recognition method based on cutting vibration features of coal shearer drums[J]. Coal Science and Technology,2013,41(10):93-95,116.
    [14]
    孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918-924.

    SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three-dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918-924.
    [15]
    殷大发. 煤矿三维地质模型精度评价及动态更新技术探讨[J]. 煤矿开采,2018,23(4):20-24.

    YIN Dafa. Exploration of precision evaluation and dynamic update technology of coal mine 3D geological model[J]. Coal Mining Technology,2018,23(4):20-24.
    [16]
    刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983.

    LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983.
    [17]
    程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.
    [18]
    卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296-2305.

    LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296-2305.
    [19]
    董刚,马宏伟,聂真. 基于虚拟煤岩界面的采煤机上滚筒路径规划[J]. 工矿自动化,2016,42(10):22-26.

    DONG Gang,MA Hongwei,NIE Zhen. Path planning of shearer up-drum based on virtual coal-rock interface[J]. Industry and Mine Automation,2016,42(10):22-26.
    [20]
    陈尔奎,吴梅花. 基于改进遗传算法和改进人工势场法的复杂环境下移动机器人路径规划[J]. 科学技术与工程,2018,18(33):79-85.

    CHEN Erkui,WU Meihua. The path planning of mobile robots based on the improved genetic algorithm and the improved artificial potential field algorithm in complex environment[J]. Science Technology and Engineering,2018,18(33):79-85.
    [21]
    权国通,谭超,侯海潮,等. 基于粒子群三次样条优化的采煤机截割路径规划[J]. 煤炭科学技术,2011,39(3):77-79.

    QUAN Guotong,TAN Chao,HOU Haichao,et al. Cutting path planning of coal shearer based on particle swarm triple spline optimization[J]. Coal Science and Technology,2011,39(3):77-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (477) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return