Citation: | YANG Yongliang, ZHANG Yu, LI Xuejia, et al. Design of an improved fiber optic pressure sensor[J]. Journal of Mine Automation,2023,49(12):12-17. doi: 10.13272/j.issn.1671-251x.2023050093 |
In response to the problems of small pressure monitoring range, low sensitivity, and high cost of existing fiber optic pressure sensors, an improved fiber optic pressure sensor is designed. A strain fiber optic grating is stuck on the cantilever beam and a temperature fiber optic grating is suspended (to make it stress free). The limit cover below the cantilever beam places the spring, corrugated pipe pressure cover, and corrugated pipe cover inside it. The inner upper plane of the limit cover contacts the upper plane of the spring, and the lower plane of the spring contacts the corrugated pipe pressure cover. When external pressure reaches the corrugated pipe through the pipeline at the bottom of the corrugated pipe, the high pressure causes it to undergo axial deformation. The deformation in turn compresses the spring. Finally, the spring undergoes deformation and transmits force to the cantilever beam, changing the stress situation of the strain grating. A spring with a larger stiffness coefficient is added to the single-layer corrugated pipe to limit its deformation when external pressure is generated, allowing the corrugated pipe and spring to jointly transmit pressure to the cantilever beam. The experimental test results show that the improved sensor has a pressure monitoring range of 0-5 MPa, which is 5 times higher than before. The sensitivity of the sensor is 0.379 98 nm/MPa, and the measurement error is within 0.02 MPa. The improved pressure sensor is validated in a water pipeline underground. The results show that compared with the measurement results of high-precision electronic pressure gauges, the pressure demodulation error of the sensor is within 0.02 MPa.
[1] |
赵林,王纪强,侯墨语. 煤矿管道泄漏监测系统设计[J]. 工矿自动化,2016,42(10):12-15. doi: 10.13272/j.issn.1671-251x.2016.10.003
ZHAO Lin,WANG Jiqiang,HOU Moyu. Design of pipeline leakage monitoring system for coal mine[J]. Industry and Mine Automation,2016,42(10):12-15. doi: 10.13272/j.issn.1671-251x.2016.10.003
|
[2] |
KLAR A,NISSIM O,ELKAYAM I. A hardening load transfer function for rock bolts and its calibration using dittributed fiber optic sensing[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(11):2816-2830. doi: 10.1016/j.jrmge.2022.12.027
|
[3] |
柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.
CHAI Jing,LIU Hongrui,ZHANG Dingding,et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.
|
[4] |
WANG Jiqiang,ZHAO Lin,LIU Tongyu, et al. Novel negative pressure wave-based pipeline leak detection system using fiber bragg grating-based pressure sensors[J]. Journal of Lightwave Technology,2017,35(16):3366-3373. doi: 10.1109/JLT.2016.2615468
|
[5] |
潘越,宋佳佳,王智冲,等. 变截面悬臂梁式光纤布拉格光栅压力传感器设计研究[J]. 激光与光电子学进展,2022,59(1):150-159.
PAN Yue,SONG Jiajia,WANG Zhichong,et al. Design and research on variable cross-section cantilever fiber bragg grating pressure sensor[J]. Laser & Optoelectronics Progress,2022,59(1):150-159.
|
[6] |
李舜华,聂泳忠,李腾跃,等. 片上温漂补偿的压阻式压力芯片的设计与制造[J]. 传感技术学报,2022,35(4):474-479. doi: 10.3969/j.issn.1004-1699.2022.04.008
LI Shunhua,NIE Yongzhong,LI Tengyue,et al. Design and fabrication of piezoresistive pressure sensor chip integrated with on-chip temperature drift compensation[J]. Chinese Journal of Sensors and Actuators,2022,35(4):474-479. doi: 10.3969/j.issn.1004-1699.2022.04.008
|
[7] |
吴佐飞,齐虹,张岩,等. SOI压力芯片敏感电阻条刻蚀研究[J]. 传感器与微系统,2022,41(3):66-67,75.
WU Zuofei,QI Hong,ZHANG Yan,et al. Sensitive resistance bar etching research of pressure-sensitive chip based on SOI[J]. Transducer and Microsystem Technologies,2022,41(3):66-67,75.
|
[8] |
李辉,朱改博. 基于Verilog HDL的管道压力自测装置系统设计[J]. 电工技术,2018(12):123-125,127. doi: 10.3969/j.issn.1002-1388.2018.12.050
LI Hui,ZHU Gaibo. Design of automatic detection device system for pipeline pressure based on Verilog HDL[J]. Electric Engineering,2018(12):123-125,127. doi: 10.3969/j.issn.1002-1388.2018.12.050
|
[9] |
苑立波,童维军,江山,等. 我国光纤传感技术发展路线图[J]. 光学学报,2022,42(1):9-42.
YUAN Libo,TONG Weijun,JIANG Shan,et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica,2022,42(1):9-42.
|
[10] |
梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826-2833. doi: 10.13225/j.cnki.jccs.2017.0364
LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826-2833. doi: 10.13225/j.cnki.jccs.2017.0364
|
[11] |
梁磊,冯坤,朱振华,等. 基于L型悬臂梁的膜片式FBG压力传感器[J]. 光电子·激光,2018,29(9):938-943. doi: 10.16136/j.joel.2018.09.0004
LIANG Lei,FENG Kun,ZHU Zhenhua,et al. A diaphragm FBG pressure sensor based on L-shaped cantilever structure[J]. Journal of Optoelectronics·Laser,2018,29(9):938-943. doi: 10.16136/j.joel.2018.09.0004
|
[12] |
CHEN Ningning,FANG Xinqiu,LIANG Minfu,et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and Adaboost algorithm[J]. Sustainability,2023,15(3):2239-2239. doi: 10.3390/su15032239
|
[13] |
杨耀忠,段鸿杰,牟菁. 基于波纹管杠杆组合结构的光纤光栅压力传感器设计[J]. 山东科学,2019,32(2):42-46. doi: 10.3976/j.issn.1002-4026.2019.02.007
YANG Yaozhong,DUAN Hongjie,MOU Jing. Design of fiber Bragg grating pressure sensor based on bellows and lever composite structure[J]. Shandong Science,2019,32(2):42-46. doi: 10.3976/j.issn.1002-4026.2019.02.007
|
[14] |
赵林,姜龙,李连庆. 一种组合结构光纤光栅压力传感器[J]. 压电与声光,2017,39(1):60-62,66. doi: 10.11977/j.issn.1004-2474.2017.01.015
ZHAO Lin,JIANG Long,LI Lianqing. An optical fiber grating pressure sensor with composition structure[J]. Piezoelectrics & Acoustooptics,2017,39(1):60-62,66. doi: 10.11977/j.issn.1004-2474.2017.01.015
|
[15] |
张超,程仁辉,黄晓昇,等. 基于光纤光栅的本煤层瓦斯钻孔塌孔表征实验研究[J/OL]. 煤炭科学技术:1-10[2023-02-28]. https://doi.org/10.13199/j.cnki.cst.2023-0071.
ZHANG Chao,CHENG Renhui,HUANG Xiaosheng,et al. Experimental study on hole collapse characterization of gas drainage holes in this coal seam based on fiber bragg grating[J/OL]. Coal Science and Technology:1-10[2023-02-28].https://doi.org/10.13199/j.cnki.cst.2023-0071.
|
[16] |
李振,王纪强,赵林,等. 基于差分结构的光纤光栅应变传感器温度补偿[J]. 山东科学,2017,30(5):50-54.
LI Zhen,WANG Jiqiang,ZHAO Lin,et al. Temperature compensation of fiber Bragg grating strain sensor based on differential structure[J]. Shandong Science,2017,30(5):50-54.
|
[17] |
吴则功,曹鲁,宁雅农,等. 一种基于光纤光栅的顶板离层传感器[J/OL]. 激光与光电子学进展:1-11[2023-02-28]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230104.1235.013.html.
WU Zegong,CAO Lu,NING Yanong,et al. A roof separation sensor based on fiber bragg grating[J/OL]. Laser & Optoelectronics Progress:1-11[2023-02-28]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230104.1235.013.html.
|
[18] |
徐飞龙. 煤矿机电设备监测中光纤传感器的应用[J]. 煤炭与化工,2021,44(10):101-103,106.
XU Feilong. Application analysis of optical fiber sensor in coal mine electromechanical equipment monitoring[J]. Coal and Chemical Industry,2021,44(10):101-103,106.
|
[19] |
王则力,王淑玉,丁镇军,等. 光纤传感器对合金结构瞬态高温应变测量的适用性研究[J]. 航天器环境工程,2023,40(1):43-48.
WANG Zeli,WANG Shuyu,DING Zhenjun,et al. Applicability study on optical fiber sensor for transient HT strain measurement of alloy structures[J]. Spacecraft Environment Engineering,2023,40(1):43-48.
|
[20] |
马崇玺. 基于光纤传感器地下隧洞工程结构应变监测[J]. 水利技术监督,2022(7):34-37.
MA Chongxi. Monitoring the strain of geotechnical structure in underground tunnel engineering with optical fiber sensor[J]. Technical Supervision in Water Resources,2022(7):34-37.
|
[21] |
陈同彦,蒋习民. 海底管道分布式光纤传感器安装工艺研究[J]. 中国石油大学胜利学院学报,2020,34(4):27-31.
CHEN Tongyan,JIANG Ximin. Research on installation technology of distributed fiber optic sensor in submarine pipeline[J]. Journal of Shengli College China University of Petroleum,2020,34(4):27-31.
|