Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076
Citation: WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076

Research on the prediction of liquid CO2 phase transition cracking radius in coal seams

doi: 10.13272/j.issn.1671-251x.2023040076
  • Received Date: 2023-04-24
  • Rev Recd Date: 2023-10-14
  • Available Online: 2023-10-25
  • Predicting cracking radius is a prerequisite for determining the holes spacing of gas extraction technology by liquid CO2 phase transition cracking and permeability improvement, which directly affects the gas extraction effect. Most existing prediction methods are based on single factor analysis. In order to grasp the influence of multiple factors on the radius of liquid CO2 phase transition cracking and effectively predict the spacing between holes, ANSYS/LS-DYNA numerical simulation software is used to carry out the research on predicting the radius of coal seam liquid CO2 phase transition cracking combing with orthogonal experiments. The numerical simulation results indicate that the order of factors affecting the radius of liquid CO2 phase transition cracking is ground stress>gas pressure>coal solidity coefficient. The cracking radius decreases with the increase of stress, and increases with the increase of gas pressure and coal solidity coefficient with a linear relationship. A multiple regression analysis is conducted on the numerical simulation results. A prediction model for the radius of liquid CO2 phase transition cracking is established based on three different coupling conditions of ground stress, gas pressure, and coal solidity coefficient. Industrial experiments are conducted on the coal mine site. Extraction boreholes are set up based on the predicted model calculation results. The pressure index method is used to test and analyze the gas extraction effect. The results show the following points. The gas pressure in the observation holes on both sides of the liquid CO2 phase transition cracking hole shows a decreasing trend with time. The farther away from the cracking hole in the initial stage of extraction, the greater the gas pressure. It is consistent with theoretical analysis and numerical simulation results. The effective cracking range of liquid CO2 phase transition is basically consistent with the predicted results. The gas volume fraction in the observation hole is 73.4% higher than that in the natural extraction hole, and the gas extraction efficiency is significantly improved.

     

  • loading
  • [1]
    陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820. doi: 10.13225/j.cnki.jccs.2021.0368

    CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808-1820. doi: 10.13225/j.cnki.jccs.2021.0368
    [2]
    NILSON R H,PROFFER W J,DUFF R E. Modelling of gas-driven fractures induced by propellant combustion within a borehole[J]. International Journal of Rock Mechanic and Mining Sciences & Geomechanics Abstracts,1985,22(1):3-19.
    [3]
    黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981,46(5):62-74.

    HUANG Rongzun. Cracking and propagation of hydraulic fracturing fractures[J]. Petroleum Expoloration and Development,1981,46(5):62-74.
    [4]
    文虎,李珍宝,王振平,等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报,2016,41(11):2793-2799.

    WEN Hu,LI Zhenbao,WANG Zhenping,et al. Experiment on the liquid CO2 fracturing process for increasing permeability and the characteristics of crack propagation in coal seam[J]. Journal of China Coal Society,2016,41(11):2793-2799.
    [5]
    张东明,白鑫,尹光志,等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报,2018,43(11):3154-3168.

    ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Mechanism of breaking and fracture expansion of liquid CO2 phase change jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(11):3154-3168.
    [6]
    董庆祥,王兆丰,韩亚北,等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报,2014,24(11):84-88.

    DONG Qingxiang,WANG Zhaofeng,HAN Yabei,et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J]. China Safety Science Journal,2014,24(11):84-88.
    [7]
    周西华,门金龙,宋东平,等. 煤层液态CO2爆破增透促抽瓦斯技术研究[J]. 中国安全科学学报,2015,25(2):60-65.

    ZHOU Xihua,MEN Jinlong,SONG Dongping,et al. Research on increasing coal seam permeability and promoting gas drainage with liquid CO2 blasting[J]. China Safety Science Journal,2015,25(2):60-65.
    [8]
    赵宝友,王海东. 煤体坚固性系数和瓦斯压力对煤层深孔爆破增透的影响[J]. 爆破,2014,31(1):25-31. doi: 10.3963/j.issn.1001-487X.2014.01.006

    ZHAO Baoyou,WANG Haidong. Impact of coal strength coefficient and methane gas pressure on permeability enhancement of coal seam induced by long-hole blasting technology[J]. Blasting,2014,31(1):25-31. doi: 10.3963/j.issn.1001-487X.2014.01.006
    [9]
    孙可明,辛利伟,吴迪. 超临界CO2气爆煤体致裂机理实验研究[J]. 爆炸与冲击,2018,38(2):302-308. doi: 10.11883/bzycj-2016-0230

    SUN Keming,XIN Liwei,WU Di. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion[J]. Explosion and Shock Waves,2018,38(2):302-308. doi: 10.11883/bzycj-2016-0230
    [10]
    贾进章,李斌,王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报,2021,31(4):57-63.

    JIA Jinzhang,LI Bin,WANG Dongming. Study on influencing factors of cracking radius range caused by liquid CO2 phase transition in coal seams[J]. China Safety Science Journal,2021,31(4):57-63.
    [11]
    袁海梁,刘孝义,陈少波,等. 基于SPH算法的CO2相变破岩数值模拟[J]. 工程爆破,2023,29(1):62-68.

    YUAN Hailiang,LIU Xiaoyi,CHEN Shaobo,et al. Numerical simulation of CO2 phase change rock breaking based on SPH algorithm[J]. Engineering Blasting,2023,29(1):62-68.
    [12]
    李连崇,赵瑜. 基于双应变胡克模型的岩石非线性弹性行为分析[J]. 岩石力学与工程学报,2012,31(10):2119-2126. doi: 10.3969/j.issn.1000-6915.2012.10.018

    LI Lianchong,ZHAO Yu. Investigation on nonlinear elastic behaviour of rocks based on a two-part Hooke's model[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):2119-2126. doi: 10.3969/j.issn.1000-6915.2012.10.018
    [13]
    刘保县,黄敬林,王泽云,等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报,2009,28(增刊1):3234-3238.

    LIU Baoxian,HUANG Jinglin,WANG Zeyun,et al. Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):3234-3238.
    [14]
    HAO Yan,ZHANG Jixiong,ZHOU Nan,et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Engineering,2019,21(3):275-283.
    [15]
    高金明,曾丹,孙磊,等. 新型发射药爆炸TNT当量系数的实验研究[J]. 爆炸与冲击,2021,41(10):45-53.

    GAO Jinming,ZENG Dan,SUN Lei,et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants[J]. Explosion and Shock Waves,2021,41(10):45-53.
    [16]
    YIN Siyu,WU Shaopeng,LIU Mingbo,et al. Study on influencing factors of unconfined penetration test based on orthogonal design[J]. Arabian Journal of Geosciences,2021,14(2):2-12.
    [17]
    安朝峰,李树刚,林海飞,等. 煤吸附甲烷的影响因素敏感性正交试验[J]. 煤矿安全,2015,46(2):1-4. doi: 10.13347/j.cnki.mkaq.2015.02.001

    AN Zhaofeng,LI Shugang,LIN Haifei,et al. Orthogonal experiment on sensitivity of impact factors in coal adsorbing methane[J]. Safety in Coal Mines,2015,46(2):1-4. doi: 10.13347/j.cnki.mkaq.2015.02.001
    [18]
    刘立忠,郭娜,马程程,等. 基于正交试验法的低温SCR锰基催化剂制备参数优化[J]. 安全与环境学报,2013,13(5):72-76.

    LIU Lizhong,GUO Na,MA Chengcheng,et al. Approach to optimizing the preparation parameters of SCR low temperature catalyst based on manganese through orthogonal experiment[J]. Journal of Safety and Environment,2013,13(5):72-76.
    [19]
    郭军,金彦,王帆,等. 基于Logistic回归分析的煤自燃多级预警方法研究[J]. 中国安全生产科学技术,2022,18(2):88-93.

    GUO Jun,JIN Yan,WANG Fan,et al. Research on multi-level warning method of coal spontaneous combustion based on Logistic regression analysis[J]. Journal of Safety Science and Technology,2022,18(2):88-93.
    [20]
    宁奕冰,唐辉明,张勃成,等. 基于正交设计的岩石相似材料配比研究及底摩擦物理模型试验应用[J]. 岩土力学,2020,41(6):2009-2020.

    NING Yibing,TANG Huiming,ZHANG Bocheng,et al. Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests[J]. Rock and Soil Mechanics,2020,41(6):2009-2020.
    [21]
    邹永洺. 基于示踪气体法的覆岩“竖三带”测定[J]. 煤矿安全,2019,50(5):7-10. doi: 10.13347/j.cnki.mkaq.2019.05.002

    ZOU Yongming. "Vertical three zones" determination of overburden based on tracer gas method[J]. Safety in Coal Mines,2019,50(5):7-10. doi: 10.13347/j.cnki.mkaq.2019.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (169) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return