Citation: | WANG Chen, YANG An. Research on the health evaluation and prediction system for mine hoists[J]. Journal of Mine Automation,2023,49(10):75-86. doi: 10.13272/j.issn.1671-251x.2023030092 |
[1] |
WANG Feng,HE Fengyou. Study of hoist perception system based on IOT technology[C]. International Conference on Web Information Systems and Mining,Sanya,2010:357-360.
|
[2] |
ZHAO Huadong,WANG Hezheng,LIU Guoning,et al. The application of Internet of things (IOT) technology in the safety monitoring system for hoisting machines[J].Applied Mechanics and Materials,2012, 1976(209/210/211):2142-2145.
|
[3] |
LI Juanli,XIE Jiacheng,YANG Zhaojian,et al. Fault diagnosis method for a mine hoist in the Internet of things environment[J]. Sensors,2018,18(6). DOI: 10.3390/s18061920.
|
[4] |
LEI Yaguo,LI Naipeng,GUO Liang,et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104(1):799-834.
|
[5] |
PENG Ying,DONG Ming. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction[J]. Signal Process,2011,25(1):237-252.
|
[6] |
LI Hong,PAN Donghui,CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,44(7):851-862.
|
[7] |
MA Meng,CHEN Xuefeng,WANG Shibin,et al. Bearing degradation assessment based on weibull distribution and deep belief network[C]. International Symposium on Flexible Automation,Cleveland,2016:382-385.
|
[8] |
FUSTER-PARRA P,TAULER P,BENNASAR-VENY M,et al. Bayesian network modeling:a case study of an epidemiologic system analysis of cardiovascular risk[J]. Computer Methods & Programs in Biomedicine,2016,126(12):128-142.
|
[9] |
WANG Lanjing,ALI Y,NAZIR S,et al. ISA evaluation framework for security of Internet of health things system using AHP-TOPSIS methods[J]. IEEE Access,2020,8:152316-152332. doi: 10.1109/ACCESS.2020.3017221
|
[10] |
MU Tongna,YU Hongmin,ZHANG Xueyan. Research on equipment health assessment based on grey system theory[C]. IEEE Prognostics and System Health Management Conference,Beijing,2012:1-4.
|
[11] |
WEI Xiao,LUO Xiangfeng,LI Qing,et al. Online comment-based hotel quality automatic assessment using improved fuzzy comprehensive evaluation and fuzzy cognitive map[J]. IEEE Transactions on Fuzzy Systems,2015,23(1):72-84. doi: 10.1109/TFUZZ.2015.2390226
|
[12] |
LI Juanjuan,MENG Guoying,XIE Guangming,et al. Study on health assessment method of a braking system of a mine hoist[J]. Sensors,2019,19(4). DOI: 10.3390/s19040769.
|
[13] |
DE SANTO A,GALLI A,GRAVINA M,et al. Deep learning for HDD health assessment:an application based on LSTM[J]. IEEE Transactions on Computers,2022,71(1):69-80. doi: 10.1109/TC.2020.3042053
|
[14] |
VATANI M,SZEREPKO M,PREBEN VIE J S. State of health prediction of li-ion batteries using incremental capacity analysis and support vector regression[C]. IEEE Milan PowerTech,Milan,2019:1-6. DOI: 10.1109/PTC.2019.8810665.
|
[15] |
DEY P,CHAULYA S K,KUMAR S. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system[J]. Process Safety and Environmental Protection,2021,152:249-263. doi: 10.1016/j.psep.2021.06.005
|
[16] |
CHENG Hongju,XIE Zhe,SHI Yushi,et al. Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM[J]. IEEE Access,2019,7:117883-117896. doi: 10.1109/ACCESS.2019.2937098
|
[17] |
REN Lei,DONG Jiabao,WANG Xiaokang,et al. A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics,2021,17(5):3478-3487. doi: 10.1109/TII.2020.3008223
|
[18] |
QIN Taichun,ZENG Shengkui,GUO Jianbin. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability,2015,55(9/10):1280-1284.
|
[19] |
MA Jun,TENG Zhaosheng,TANG Qiu,et al. Measurement error prediction of power metering equipment using improved local outlier factor and kernel support vector regression[J]. IEEE Transactions on Industrial Electronics,2022,69(9):9575-9585. doi: 10.1109/TIE.2021.3114740
|
[20] |
SAIDI L,ALI J B,BECHHOEFER E,et al. Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[J]. Applied Acoustics,2017,120:1-8. doi: 10.1016/j.apacoust.2017.01.005
|
[21] |
FU Wenlong,SHAO Kaixuan,TAN Jiawen,et al. Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and SVM with hybrid mutation SCA-HHO algorithm optimization[J]. IEEE Access,2020,8:13086-13104. doi: 10.1109/ACCESS.2020.2966582
|
[22] |
AHMED R,ZAYED T,NASIRI F. A hybrid genetic algorithm-based fuzzy Markovian model for the deterioration modeling of healthcare facilities[J]. Algorithms,2020,13(9):210-230. doi: 10.3390/a13090210
|
[23] |
HUANG Zhi'an,LE Tian,GAO Yukun,et al. Safety assessment of emergency training for industrial accident scenarios based on analytic hierarchy process and gray-fuzzy comprehensive assessment[J]. IEEE Access,2020,8:144767-144777. doi: 10.1109/ACCESS.2020.3013671
|
[24] |
YU Xueyi,MU Chi,ZHANG Dongdong. Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation[J]. Sustainability,2020,12(5):1-20.
|
[25] |
VAN HOUDT B. Randomized work stealing versus sharing in large-scale systems with nonexponential job sizes[J]. IEEE/ACM Transactions on Networking,2019,27(5):2137-2149. doi: 10.1109/TNET.2019.2939040
|
[26] |
CHITSAZAN M A,FADALI M S,TRZYNADLOWSKI A M. State estimation for large-scale power systems and FACTS devices based on spanning tree maximum exponential absolute value[J]. IEEE Transactions on Power Systems,2020,35(1):238-248. doi: 10.1109/TPWRS.2019.2934705
|
[27] |
LIN Zhenzhi,WEN Fushuan,WANG Huifang,et al. CRITIC-based node importance evaluation in skeleton-network reconfiguration of power grids[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2018,65(2):206-210.
|
[28] |
YANG Tingfang,LIU Haifeng,ZENG Xiangjun,et al. Application of a combined decision model based on optimal weights in incipient faults diagnosis for power transformer[J]. IEEJ Transactions on Electrical and Electronic Engineering,2017,12(2):169-175. doi: 10.1002/tee.22363
|
[29] |
GUO Yanhui,HAN Siming,SHEN Chuanhe,et al. An adaptive SVR for high-frequency stock price forecasting[J]. IEEE Access,2018,6:11397-11404. doi: 10.1109/ACCESS.2018.2806180
|
[30] |
ZHANG Pengcheng,ZHOU Xuewu,PELLICCIONE P,et al. RBF-MLMR:a multi-label metamorphic relation prediction approach using RBF neural network[J]. IEEE Access,2017,5:21791-21805. doi: 10.1109/ACCESS.2017.2758790
|