Citation: | HAO Mingyue, MIN Bingbing, ZHANG Xinjian, et al. A miner queue detection method based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(11):160-166. doi: 10.13272/j.issn.1671-251x.2023030058 |
[1] |
饶天荣,潘涛,徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化,2022,48(10):48-54.
RAO Tianrong,PAN Tao,XU Huijun. Identification of unsafe behaviors in coal mines based on cross-attention mechanism[J]. Journal of Mine Automation,2022,48(10):48-54.
|
[2] |
李琰,刘珍,陈南希. 基于矿工大数据的不安全行为主题挖掘与语义分析[J]. 煤矿安全,2023,54(9):254-257.
LI Yan,LIU Zhen,CHEN Nanxi. Topic mining and semantic analysis of unsafe behavior based on miner big data[J]. Safety in Coal Mines,2023,54(9):254-257.
|
[3] |
崔丽珍,张清宇,郭倩倩,等. 基于CNN−LSTM的井下人员行为模式识别模型[J]. 无线电工程,2023,53(6):1375-1381. doi: 10.3969/j.issn.1003-3106.2023.06.017
CUI Lizhen,ZHANG Qingyu,GUO Qianqian,et al. Underground personnel behavior pattern recognition model based on CNN-LSTM[J]. Radio Engineering,2023,53(6):1375-1381. doi: 10.3969/j.issn.1003-3106.2023.06.017
|
[4] |
王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.
WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
|
[5] |
张海彬,黄晶,宋志强,等. 一种基于背景差分法的室内排队人数检测方法[J]. 电子测量技术,2019,42(14):123-126.
ZHANG Haibin,HUANG Jing,SONG Zhiqiang,et al. Detection method of the number of people of indoor queues based on background difference method[J]. Electronic Measurement Technology,2019,42(14):123-126.
|
[6] |
ZHU Di,ZHANG Fan,WANG Shengyin,et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks[J]. Journal of Planning Literature,2020,35(3):362-363.
|
[7] |
JATI A,GEORGIOU P. Neural predictive coding using convolutional neural networks toward unsupervised learning of speaker characteristics[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2019,27(10):1577-1589. doi: 10.1109/TASLP.2019.2921890
|
[8] |
陈国栋,严铮,赵志峰,等. 一种基于OpenPose和OpenCV的公共场所排队异常行为检测方法:CN202111251971. X[P]. 2022-01-28.
CHEN Guodong,YAN Zheng,ZHAO Zhifeng,et al. A method for detecting abnormal queuing behavior in public places based on OpenPose and OpenCV:CN202111251971. X[P]. 2022-01-28.
|
[9] |
侯公羽,陈钦煌,杨振华,等. 基于改进YOLOv5的安全帽检测算法[J/OL]. 工程科学学报:1-15[2023-11-03]. http://kns.cnki.net/kcms/detail/10.1297.TF.20231103.1351.004.html.
HOU Gongyu,CHEN Qinhuang,YANG Zhenhua,et al. Safety helmet detection algorithm based on improved YOLOv5[J/OL]. Chinese Journal of Engineering:1-15[2023-11-03]. http://kns.cnki.net/kcms/detail/10.1297.TF.20231103.1351.004.html.
|
[10] |
张释如,黄综浏,张袁浩,等. 基于改进YOLOv5的煤矸识别研究[J]. 工矿自动化,2022,48(11):39-44.
ZHANG Shiru,HUANG Zongliu,ZHANG Yuanhao,et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44.
|
[11] |
LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection [C]. IEEE International Conference on Computer Vision,Venice,2017:2999-3007.
|
[12] |
张倩,刘紫燕,陈运雷,等. 融合Transformer和改进PANet的YOLOv5s交通标志检测[J]. 传感技术学报,2023,36(2):232-241.
ZHANG Qian,LIU Ziyan,CHEN Yunlei,et al. Fusion transformer and improved PANet for YOLOv5s traffic sign detection[J]. Chinese Journal of Sensors and Actuators,2023,36(2):232-241.
|
[13] |
郭宝鑫,谢晓尧,刘嵩. 改进ResNet50和FPN的多尺度目标检测算法研究[J/OL]. 贵州师范大学学报(自然科学版):1-9[2023-11-03]. http://kns.cnki.net/kcms/detail/52.5006.N.20230925.1017.006.html.
GUO Baoxin,XIE Xiaoyao,LIU Song. Research on improved multiscale object detection algorithm of ResNet50 and FPN[J/OL]. Journal of Guizhou Normal University(Natural Sciences):1-9[2023-11-03]. http://kns.cnki.net/kcms/detail/52.5006.N.20230925.1017.006.html.
|
[14] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[EB/OL]. [2023-02-25]. https://arxiv.org/abs/1506.02640.
|
[15] |
REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
|
[16] |
ARION N,MASSA F,SYNNAEVE G,et al. End-to-end object detection with transformers[C]. Proceedings of the Computer Vision ,Glasgow,2020:213–229.
|
[17] |
邵文泽,胡洪明,李金叶,等. 一种适应不同距离的低清人脸深度识别算法[J]. 南京邮电大学学报(自然科学版),2023,43(1):1-10.
SHAO Wenze,HU Hongming,LI Jinye,et al. Deep recognition of low-res faces in varying different distances[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2023,43(1):1-10.
|
[18] |
王星,白尚旺,潘理虎,等. 一种矿井图像增强算法[J]. 工矿自动化,2017,43(3):48-52.
WANG Xing,BAI Shangwang,PAN Lihu,et al. A mine image enhancement algorithm[J]. Industry and Mine Automation,2017,43(3):48-52.
|
[19] |
姚超修,蒋泽,胡亚磊. 基于改进EnlightenGAN的煤矿井下图像增强算法[J]. 煤炭技术,2023,42(9):219-222.
YAO Chaoxiu,JIANG Ze,HU Yalei. Improved image enhancement algorithm for underground coal mine based on enlightenGAN[J]. Coal Technology,2023,42(9):219-222.
|
[20] |
彭章龙. 基于YOLOX的低光照条件下目标检测算法研究[D]. 荆州:长江大学,2023.
PENG Zhanglong. Research on object detection algorithm under low light conditions based on YOLOX [D]. Jingzhou:Yangtze University,2023.
|
[21] |
邵小强,李鑫,杨涛,等. 改进YOLOv5s和DeepSORT的井下人员检测及跟踪算法[J/OL]. 煤炭科学技术:1-12[2023-11-03]. https://doi.org/10.13199/j.cnki.cst.2022-1933.
SHAO Xiaoqiang,LI Xin,YANG Tao,et al. Detection and tracking algorithm for underground personnel of improved YOLOv5s and DeepSORT[J/OL]. Coal Science and Technology:1-12[2023-11-03]. https://doi.org/10.13199/j.cnki.cst.2022-1933.
|