Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
HAO Mingyue, MIN Bingbing, ZHANG Xinjian, et al. A miner queue detection method based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(11):160-166.  doi: 10.13272/j.issn.1671-251x.2023030058
Citation: HAO Mingyue, MIN Bingbing, ZHANG Xinjian, et al. A miner queue detection method based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(11):160-166.  doi: 10.13272/j.issn.1671-251x.2023030058

A miner queue detection method based on improved YOLOv5s

doi: 10.13272/j.issn.1671-251x.2023030058
  • Received Date: 2023-03-17
  • Rev Recd Date: 2023-11-12
  • Available Online: 2023-11-27
  • Traditional object detection algorithms require manual feature extraction when recognizing abnormal behavior of miners queuing, resulting in long detection time and low detection precision. The object detection algorithm based on convolutional neural networks has improved detection speed and precision. But its detection performance is difficult to guarantee in scenarios of obstruction, dimness, and uneven illumination. In order to solve the above problems, an improved YOLOv5s (HPI YOLOv5s) model is proposed. It is used for miner queue detection. The HPI-YOLOv5s model improves the path aggregation network (PANet) on the basis of the YOLOv5s model. By deleting a single input edge node and adding bidirectional crossing paths, a bidirectional cross feature pyramid network (BCrFPN) is constructed for multi-scale feature fusion. Considering the low robustness of label allocation strategies with manually set thresholds, a dynamic label allocation strategy (ATSS-PLUS) is proposed based on adaptive training sample selection (ATSS) to dynamically set thresholds. It can reasonably evaluate the quality of candidate samples and dynamically set thresholds for each real object, resulting in higher detection precision and robustness. The method calculates the intersection area between the face frame and the designated queue area using the half plane intersection method. The method compares the ratio of the intersection area to the face frame area with the set threshold to determine whether the miners are queuing in an orderly manner. The experimental results show that the HPI-YOLOv5s model has an accuracy improvement of 1.9%, a weight reduction of 32%, a parameter reduction of 6.9%, and a detection speed improvement of 7.8% compared to the YOLOv5s model. Moreover, it can more accurately recognize the queuing situation of miners in obstruction, dimness, and uneven illumination mine images.

     

  • loading
  • [1]
    饶天荣,潘涛,徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化,2022,48(10):48-54.

    RAO Tianrong,PAN Tao,XU Huijun. Identification of unsafe behaviors in coal mines based on cross-attention mechanism[J]. Journal of Mine Automation,2022,48(10):48-54.
    [2]
    李琰,刘珍,陈南希. 基于矿工大数据的不安全行为主题挖掘与语义分析[J]. 煤矿安全,2023,54(9):254-257.

    LI Yan,LIU Zhen,CHEN Nanxi. Topic mining and semantic analysis of unsafe behavior based on miner big data[J]. Safety in Coal Mines,2023,54(9):254-257.
    [3]
    崔丽珍,张清宇,郭倩倩,等. 基于CNN−LSTM的井下人员行为模式识别模型[J]. 无线电工程,2023,53(6):1375-1381. doi: 10.3969/j.issn.1003-3106.2023.06.017

    CUI Lizhen,ZHANG Qingyu,GUO Qianqian,et al. Underground personnel behavior pattern recognition model based on CNN-LSTM[J]. Radio Engineering,2023,53(6):1375-1381. doi: 10.3969/j.issn.1003-3106.2023.06.017
    [4]
    王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.

    WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
    [5]
    张海彬,黄晶,宋志强,等. 一种基于背景差分法的室内排队人数检测方法[J]. 电子测量技术,2019,42(14):123-126.

    ZHANG Haibin,HUANG Jing,SONG Zhiqiang,et al. Detection method of the number of people of indoor queues based on background difference method[J]. Electronic Measurement Technology,2019,42(14):123-126.
    [6]
    ZHU Di,ZHANG Fan,WANG Shengyin,et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks[J]. Journal of Planning Literature,2020,35(3):362-363.
    [7]
    JATI A,GEORGIOU P. Neural predictive coding using convolutional neural networks toward unsupervised learning of speaker characteristics[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2019,27(10):1577-1589. doi: 10.1109/TASLP.2019.2921890
    [8]
    陈国栋,严铮,赵志峰,等. 一种基于OpenPose和OpenCV的公共场所排队异常行为检测方法:CN202111251971. X[P]. 2022-01-28.

    CHEN Guodong,YAN Zheng,ZHAO Zhifeng,et al. A method for detecting abnormal queuing behavior in public places based on OpenPose and OpenCV:CN202111251971. X[P]. 2022-01-28.
    [9]
    侯公羽,陈钦煌,杨振华,等. 基于改进YOLOv5的安全帽检测算法[J/OL]. 工程科学学报:1-15[2023-11-03]. http://kns.cnki.net/kcms/detail/10.1297.TF.20231103.1351.004.html.

    HOU Gongyu,CHEN Qinhuang,YANG Zhenhua,et al. Safety helmet detection algorithm based on improved YOLOv5[J/OL]. Chinese Journal of Engineering:1-15[2023-11-03]. http://kns.cnki.net/kcms/detail/10.1297.TF.20231103.1351.004.html.
    [10]
    张释如,黄综浏,张袁浩,等. 基于改进YOLOv5的煤矸识别研究[J]. 工矿自动化,2022,48(11):39-44.

    ZHANG Shiru,HUANG Zongliu,ZHANG Yuanhao,et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44.
    [11]
    LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection [C]. IEEE International Conference on Computer Vision,Venice,2017:2999-3007.
    [12]
    张倩,刘紫燕,陈运雷,等. 融合Transformer和改进PANet的YOLOv5s交通标志检测[J]. 传感技术学报,2023,36(2):232-241.

    ZHANG Qian,LIU Ziyan,CHEN Yunlei,et al. Fusion transformer and improved PANet for YOLOv5s traffic sign detection[J]. Chinese Journal of Sensors and Actuators,2023,36(2):232-241.
    [13]
    郭宝鑫,谢晓尧,刘嵩. 改进ResNet50和FPN的多尺度目标检测算法研究[J/OL]. 贵州师范大学学报(自然科学版):1-9[2023-11-03]. http://kns.cnki.net/kcms/detail/52.5006.N.20230925.1017.006.html.

    GUO Baoxin,XIE Xiaoyao,LIU Song. Research on improved multiscale object detection algorithm of ResNet50 and FPN[J/OL]. Journal of Guizhou Normal University(Natural Sciences):1-9[2023-11-03]. http://kns.cnki.net/kcms/detail/52.5006.N.20230925.1017.006.html.
    [14]
    REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[EB/OL]. [2023-02-25]. https://arxiv.org/abs/1506.02640.
    [15]
    REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
    [16]
    ARION N,MASSA F,SYNNAEVE G,et al. End-to-end object detection with transformers[C]. Proceedings of the Computer Vision ,Glasgow,2020:213–229.
    [17]
    邵文泽,胡洪明,李金叶,等. 一种适应不同距离的低清人脸深度识别算法[J]. 南京邮电大学学报(自然科学版),2023,43(1):1-10.

    SHAO Wenze,HU Hongming,LI Jinye,et al. Deep recognition of low-res faces in varying different distances[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2023,43(1):1-10.
    [18]
    王星,白尚旺,潘理虎,等. 一种矿井图像增强算法[J]. 工矿自动化,2017,43(3):48-52.

    WANG Xing,BAI Shangwang,PAN Lihu,et al. A mine image enhancement algorithm[J]. Industry and Mine Automation,2017,43(3):48-52.
    [19]
    姚超修,蒋泽,胡亚磊. 基于改进EnlightenGAN的煤矿井下图像增强算法[J]. 煤炭技术,2023,42(9):219-222.

    YAO Chaoxiu,JIANG Ze,HU Yalei. Improved image enhancement algorithm for underground coal mine based on enlightenGAN[J]. Coal Technology,2023,42(9):219-222.
    [20]
    彭章龙. 基于YOLOX的低光照条件下目标检测算法研究[D]. 荆州:长江大学,2023.

    PENG Zhanglong. Research on object detection algorithm under low light conditions based on YOLOX [D]. Jingzhou:Yangtze University,2023.
    [21]
    邵小强,李鑫,杨涛,等. 改进YOLOv5s和DeepSORT的井下人员检测及跟踪算法[J/OL]. 煤炭科学技术:1-12[2023-11-03]. https://doi.org/10.13199/j.cnki.cst.2022-1933.

    SHAO Xiaoqiang,LI Xin,YANG Tao,et al. Detection and tracking algorithm for underground personnel of improved YOLOv5s and DeepSORT[J/OL]. Coal Science and Technology:1-12[2023-11-03]. https://doi.org/10.13199/j.cnki.cst.2022-1933.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (163) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return