Volume 49 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation,2023,49(8):100-105.  doi: 10.13272/j.issn.1671-251x.2023030045
Citation: ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation,2023,49(8):100-105.  doi: 10.13272/j.issn.1671-251x.2023030045

Lightweight multi-scale cross channel attention coal flow detection network

doi: 10.13272/j.issn.1671-251x.2023030045
  • Received Date: 2023-03-13
  • Rev Recd Date: 2023-08-18
  • Available Online: 2023-09-04
  • In order to improve the operating efficiency of belt conveyors through variable frequency speed regulation, it is necessary to detect the coal flow of belt conveyor. The existing deep learning-based coal flow detection methods for belt conveyors are difficult to achieve a balance between model lightweight and classification accuracy. There are few researches on the impact of imbalanced channel weight distribution on detection accuracy in the feature extraction process. In order to solve the above problems, a lightweight multi-scale cross channel attention coal flow detection network is proposed. The network consists of a feature extraction network and a classification network. The lightweight residual network ResNet18 is used as the feature extraction network, and on this basis, the coal flow channel attention (CFCA) subnetwork is introduced. The CFCA subnetwork uses multiple one-dimensional convolutions with different kernel sizes, and stacks the output of one-dimensional convolution to capture cross channel interaction relationships at different scales in the feature map. It achieves the reassignment of feature map weights, thereby improving semantic expression capability of the feature extraction network. The classification network consists of three fully connected layers, which take the output of the vectorized feature extraction network as input and perform nonlinear mapping on it. It ultimately obtains the probability distribution of three types of results: "little coal", "moderate coal", and "much coal". By transforming the coal flow detection problem into an image classification problem, the problem of frequent frequency conversion and speed regulation of belt conveyors caused by excessive fluctuations in instantaneous coal flow is avoided. It improves stability of belt conveyor operation. The experimental results show that the ResNet18+CFCA network improves classification accuracy by 1.6% compared to the ResNet18 network, with almost no increase in network parameters and computational complexity. It can distinguish foreground information in images more effectively and accurately extract coal flow features.

     

  • loading
  • [1]
    王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.

    WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
    [2]
    张志军. 基于变频技术的煤矿带式输送机节能控制系统研究[J]. 能源与环保,2023,45(7):210-215.

    ZHANG Zhijun. Research on energy-saving control system of coal mine belt conveyor based on frequency conversion technology[J]. China Energy and Environmental Protection,2023,45(7):210-215.
    [3]
    李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析[J]. 能源与环保,2023,45(7):228-232,238.

    LI Ahong. Design and energy efficiency analysis of mining belt conveyor system based on image processing[J]. China Energy and Environmental Protection,2023,45(7):228-232,238.
    [4]
    王志广,王朋飞. 变频控制系统在矿用带式输送机中的应用[J]. 能源与环保,2021,43(9):255-259,265.

    WANG Zhiguang,WANG Pengfei. Application of frequency conversion control system in belt conveyor used in mine[J]. China Energy and Environmental Protection,2021,43(9):255-259,265.
    [5]
    李亚飞. 变频节能控制系统在带式输送机中的应用研究[J]. 石化技术,2023,30(6):297-298. doi: 10.3969/j.issn.1006-0235.2023.06.103

    LI Yafei. Research on the application of frequency conversion and energy saving control system in belt conveyor[J]. Petrochemical Industry Technology,2023,30(6):297-298. doi: 10.3969/j.issn.1006-0235.2023.06.103
    [6]
    于林海. 带式输送机能耗优化控制系统设计与应用[J]. 石化技术,2023,30(5):249-250. doi: 10.3969/j.issn.1006-0235.2023.05.085

    YU Linhai. Design and application of optimised control system for energy consumption of belt conveyor[J]. Petrochemical Industry Technology,2023,30(5):249-250. doi: 10.3969/j.issn.1006-0235.2023.05.085
    [7]
    王文龙. 煤矿带式输送机智能化控制系统技术应用[J]. 机械管理开发,2023,38(5):217-218,223.

    WANG Wenlong. Intelligent control system technology application for coal mine belt conveyor[J]. Mechanical Management and Development,2023,38(5):217-218,223.
    [8]
    王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究[J]. 煤矿机械,2023,44(1):14-17.

    WANG Guizhong,YE Longhao. Design and research of belt conveyor energy-saving control system based on coal flow recognition[J]. Coal Mine Machinery,2023,44(1):14-17.
    [9]
    张少宾,蒋卫良,芮丰. 矿用带式输送机输送量测量方法现状及发展趋势[J]. 工矿自动化,2019,45(5):100-103. doi: 10.13272/j.issn.1671-251x.2019010055

    ZHANG Shaobin,JIANG Weiliang,RUI Feng. Current status and development trend of measuring methods of conveying capacity of mine-used belt conveyor[J]. Industry and Mine Automation,2019,45(5):100-103. doi: 10.13272/j.issn.1671-251x.2019010055
    [10]
    姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.

    JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
    [11]
    于海里,孙立超,左胜,等. 基于双激光雷达的带式输送机煤流量检测系统[J]. 工矿自动化,2023,49(7):27-34,59.

    YU Haili,SUN Lichao,ZUO Sheng,et al. Coal flow detection system for belt conveyor based on dual lidar[J]. Journal of Mine Automation,2023,49(7):27-34,59.
    [12]
    关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.

    GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24.
    [13]
    崔振国. 基于机器视觉的带式输送机煤量监测系统研究[D]. 徐州: 中国矿业大学, 2021.

    CUI Zhenguo. Study on coal quantity monitoring system of belt conveyor based on machine vision[D]. Xuzhou: China University of Mining and Technology, 2021.
    [14]
    李学晖. 基于机器视觉和深度学习的带式输送机煤量识别方法研究[D]. 邯郸: 河北工程大学, 2022.

    LI Xuehui. Research on coal quantity identification method of belt conveyor based on machine vision and deep learning[D]. Handan: Hebei University of Engineering, 2022.
    [15]
    袁敦鹏. 基于三维点云的带式输送机跑偏及堆煤监测技术研究[D]. 徐州: 中国矿业大学, 2022.

    YUAN Dunpeng. Study on the belt conveyor deviation and coal stacking monitoring based on three-dimensional point cloud[D]. Xuzhou: China University of Mining and Technology, 2022.
    [16]
    王桂梅,李学晖,杨立洁,等. 基于深度学习的永磁直驱带式输送机煤量检测方法研究[J]. 煤炭技术,2022,41(1):188-190.

    WANG Guimei,LI Xuehui,YANG Lijie,et al. Research on coal quantity detection method of permanent magnet direct drive belt conveyor based on deep learning[J]. Coal Technology,2022,41(1):188-190.
    [17]
    成彦颖. 煤矿井下传送带智能输煤检测的研究[D]. 太原: 太原科技大学, 2021.

    CHENG Yanying. Research on intelligent coal conveying detection of underground conveyor belt in coal mine[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.
    [18]
    XI Tianyu,WANG Jiangning,HAN Yan,et al. Multiple butterfly recognition based on deep residual learning and image analysis[J]. Entomological Research,2022,52(1):44-53. doi: 10.1111/1748-5967.12564
    [19]
    HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018. DOI: 10.1109/CVPR.2018.00745.
    [20]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020. DOI: 10.1109/CVPR42600.2020.01155.
    [21]
    WANG Chengyang,ZHONG Caiming. Adaptive feature pyramid networks for object detection[J]. IEEE Access,2021,9:107024-107032. doi: 10.1109/ACCESS.2021.3100369
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (166) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return