Citation: | ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation,2023,49(8):100-105. doi: 10.13272/j.issn.1671-251x.2023030045 |
[1] |
王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.
WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
|
[2] |
张志军. 基于变频技术的煤矿带式输送机节能控制系统研究[J]. 能源与环保,2023,45(7):210-215.
ZHANG Zhijun. Research on energy-saving control system of coal mine belt conveyor based on frequency conversion technology[J]. China Energy and Environmental Protection,2023,45(7):210-215.
|
[3] |
李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析[J]. 能源与环保,2023,45(7):228-232,238.
LI Ahong. Design and energy efficiency analysis of mining belt conveyor system based on image processing[J]. China Energy and Environmental Protection,2023,45(7):228-232,238.
|
[4] |
王志广,王朋飞. 变频控制系统在矿用带式输送机中的应用[J]. 能源与环保,2021,43(9):255-259,265.
WANG Zhiguang,WANG Pengfei. Application of frequency conversion control system in belt conveyor used in mine[J]. China Energy and Environmental Protection,2021,43(9):255-259,265.
|
[5] |
李亚飞. 变频节能控制系统在带式输送机中的应用研究[J]. 石化技术,2023,30(6):297-298. doi: 10.3969/j.issn.1006-0235.2023.06.103
LI Yafei. Research on the application of frequency conversion and energy saving control system in belt conveyor[J]. Petrochemical Industry Technology,2023,30(6):297-298. doi: 10.3969/j.issn.1006-0235.2023.06.103
|
[6] |
于林海. 带式输送机能耗优化控制系统设计与应用[J]. 石化技术,2023,30(5):249-250. doi: 10.3969/j.issn.1006-0235.2023.05.085
YU Linhai. Design and application of optimised control system for energy consumption of belt conveyor[J]. Petrochemical Industry Technology,2023,30(5):249-250. doi: 10.3969/j.issn.1006-0235.2023.05.085
|
[7] |
王文龙. 煤矿带式输送机智能化控制系统技术应用[J]. 机械管理开发,2023,38(5):217-218,223.
WANG Wenlong. Intelligent control system technology application for coal mine belt conveyor[J]. Mechanical Management and Development,2023,38(5):217-218,223.
|
[8] |
王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究[J]. 煤矿机械,2023,44(1):14-17.
WANG Guizhong,YE Longhao. Design and research of belt conveyor energy-saving control system based on coal flow recognition[J]. Coal Mine Machinery,2023,44(1):14-17.
|
[9] |
张少宾,蒋卫良,芮丰. 矿用带式输送机输送量测量方法现状及发展趋势[J]. 工矿自动化,2019,45(5):100-103. doi: 10.13272/j.issn.1671-251x.2019010055
ZHANG Shaobin,JIANG Weiliang,RUI Feng. Current status and development trend of measuring methods of conveying capacity of mine-used belt conveyor[J]. Industry and Mine Automation,2019,45(5):100-103. doi: 10.13272/j.issn.1671-251x.2019010055
|
[10] |
姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.
JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
|
[11] |
于海里,孙立超,左胜,等. 基于双激光雷达的带式输送机煤流量检测系统[J]. 工矿自动化,2023,49(7):27-34,59.
YU Haili,SUN Lichao,ZUO Sheng,et al. Coal flow detection system for belt conveyor based on dual lidar[J]. Journal of Mine Automation,2023,49(7):27-34,59.
|
[12] |
关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.
GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24.
|
[13] |
崔振国. 基于机器视觉的带式输送机煤量监测系统研究[D]. 徐州: 中国矿业大学, 2021.
CUI Zhenguo. Study on coal quantity monitoring system of belt conveyor based on machine vision[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[14] |
李学晖. 基于机器视觉和深度学习的带式输送机煤量识别方法研究[D]. 邯郸: 河北工程大学, 2022.
LI Xuehui. Research on coal quantity identification method of belt conveyor based on machine vision and deep learning[D]. Handan: Hebei University of Engineering, 2022.
|
[15] |
袁敦鹏. 基于三维点云的带式输送机跑偏及堆煤监测技术研究[D]. 徐州: 中国矿业大学, 2022.
YUAN Dunpeng. Study on the belt conveyor deviation and coal stacking monitoring based on three-dimensional point cloud[D]. Xuzhou: China University of Mining and Technology, 2022.
|
[16] |
王桂梅,李学晖,杨立洁,等. 基于深度学习的永磁直驱带式输送机煤量检测方法研究[J]. 煤炭技术,2022,41(1):188-190.
WANG Guimei,LI Xuehui,YANG Lijie,et al. Research on coal quantity detection method of permanent magnet direct drive belt conveyor based on deep learning[J]. Coal Technology,2022,41(1):188-190.
|
[17] |
成彦颖. 煤矿井下传送带智能输煤检测的研究[D]. 太原: 太原科技大学, 2021.
CHENG Yanying. Research on intelligent coal conveying detection of underground conveyor belt in coal mine[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.
|
[18] |
XI Tianyu,WANG Jiangning,HAN Yan,et al. Multiple butterfly recognition based on deep residual learning and image analysis[J]. Entomological Research,2022,52(1):44-53. doi: 10.1111/1748-5967.12564
|
[19] |
HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018. DOI: 10.1109/CVPR.2018.00745.
|
[20] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020. DOI: 10.1109/CVPR42600.2020.01155.
|
[21] |
WANG Chengyang,ZHONG Caiming. Adaptive feature pyramid networks for object detection[J]. IEEE Access,2021,9:107024-107032. doi: 10.1109/ACCESS.2021.3100369
|