Citation: | CAI Anjiang, ZHANG Yan, REN Zhigang. Fault knowledge graph construction for coal mine fully mechanized mining equipment[J]. Journal of Mine Automation,2023,49(5):46-51. doi: 10.13272/j.issn.1671-251x.2023020005 |
[1] |
李梅,杨帅伟,孙振明,等. 智慧矿山框架与发展前景研究[J]. 煤炭科学技术,2017,45(1):121-128,134. doi: 10.13199/j.cnki.cst.2017.01.021
LI Mei,YANG Shuaiwei,SUN Zhenming,et al. Study on framework and development prospects of intelligent mine[J]. Coal Science and Technology,2017,45(1):121-128,134. doi: 10.13199/j.cnki.cst.2017.01.021
|
[2] |
王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152
WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305. doi: 10.13225/j.cnki.jccs.2018.0152
|
[3] |
王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8. doi: 10.13199/j.cnki.cst.2021.09.001
WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and future prospects[J]. Coal Science and Technology,2021,49(9):1-8. doi: 10.13199/j.cnki.cst.2021.09.001
|
[4] |
李旭,吴雪菲,田野,等. 基于云平台的综采设备群远程故障诊断系统[J]. 工矿自动化,2021,47(7):57-62. doi: 10.13272/j.issn.1671-251x.17794
LI Xu,WU Xuefei,TIAN Ye,et al. Remote fault diagnosis system of fully mechanized mining equipment group based on cloud platform[J]. Industry and Mine Automation,2021,47(7):57-62. doi: 10.13272/j.issn.1671-251x.17794
|
[5] |
张旭辉,潘格格,郭欢欢,等. 基于深度迁移学习的采煤机摇臂部滚动轴承故障诊断方法[J]. 煤炭科学技术,2022,50(4):256-263.
ZHANG Xuhui,PAN Gege,GUO Huanhuan,et al. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. Coal Science and Technology,2022,50(4):256-263.
|
[6] |
聂同攀,曾继炎,程玉杰,等. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J]. 航空学报,2022,43(8):46-62.
NIE Tongpan,ZENG Jiyan,CHENG Yujie,et al. Knowledge graph construction technology and its application in aircraft power system fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica,2022,43(8):46-62.
|
[7] |
林凌云,陈青,金磊,等. 基于知识图谱的变电站告警信息故障知识表示研究与应用[J]. 电力系统保护与控制,2022,50(12):90-99.
LIN Lingyun,CHEN Qing,JIN Lei,et al. Research and application of substation alarm signal fault knowledge representation based on knowledge graph[J]. Power System Protection and Control,2022,50(12):90-99.
|
[8] |
侯靖琳,仇润鹤,薛季爱,等. 基于知识图谱嵌入和补全的电梯故障预测[J]. 计算机工程与设计,2022,43(1):224-230.
HOU Jinglin,QIU Runhe,XUE Ji'ai,et al. Elevator failure prediction based on embedding and completion of knowledge graph[J]. Computer Engineering and Design,2022,43(1):224-230.
|
[9] |
马红兵. 综采工作面电气设备故障处理分析[J]. 内蒙古石油化工,2021,47(1):74-75. doi: 10.3969/j.issn.1006-7981.2021.01.028
MA Hongbing. Analysis of the processing in electrical equipment failure at fully mechanized working face[J]. Inner Mongolia Petrochemical Industry,2021,47(1):74-75. doi: 10.3969/j.issn.1006-7981.2021.01.028
|
[10] |
胡芳槐. 基于多种数据源的中文知识图谱构建方法研究[D]. 上海: 华东理工大学, 2015.
HU Fanghuai. Chinese knowledge graph construction method based on multiple data sources[D]. Shanghai: East China University of Science and Technology, 2015.
|
[11] |
吴玉龙. 综采工作面煤矿机械设备常见故障研究[J]. 科技创新与应用,2022,12(29):162-164,168.
WU Yulong. Research on common faults of coal mining machinery and equipment in fully mechanized working face[J]. Technology Innovation and Application,2022,12(29):162-164,168.
|
[12] |
王萌,王昊奋,李博涵,等. 新一代知识图谱关键技术综述[J]. 计算机研究与发展,2022,59(9):1947-1965. doi: 10.7544/issn1000-1239.20210829
WANG Meng,WANG Haofen,LI Bohan,et al. Survey on key technologies of new generation knowledge graph[J]. Journal of Computer Research and Development,2022,59(9):1947-1965. doi: 10.7544/issn1000-1239.20210829
|
[13] |
卢绍帅,陈龙,卢光跃,等. 面向小样本情感分类任务的弱监督对比学习框架[J]. 计算机研究与发展,2022,59(9):2003-2014. doi: 10.7544/issn1000-1239.20210699
LU Shaoshuai,CHEN Long,LU Guangyue,et al. Weakly-supervised contrastive learning framework for few-shot sentiment classification tasks[J]. Journal of Computer Research and Development,2022,59(9):2003-2014. doi: 10.7544/issn1000-1239.20210699
|
[14] |
TONG Fan, LUO Zheheng, ZHAO Dongsheng. A deep network based integrated model for disease named entity recognition[C]. IEEE International Conference on Bioinformatics and Biomedicine, Kansas, 2017: 618-621.
|
[15] |
金相臣,吴子锐,石敏,等. 基于BiLSTM的地质片段层位预测方法[J]. 高技术通讯,2021,31(6):607-614. doi: 10.3772/j.issn.1002-0470.2021.06.005
JIN Xiangchen,WU Zirui,SHI Min,et al. Geological segment horizon prediction method based on BiLSTM[J]. Chinese High Technology Letters,2021,31(6):607-614. doi: 10.3772/j.issn.1002-0470.2021.06.005
|
[16] |
LEI Jianbo,TANG Buzhou,LU Xueqin,et al. A comprehensive study of named entity recognition in Chinese clinical text[J]. Journal of the American Medical Informatics Association,2014,21(5):808-814. doi: 10.1136/amiajnl-2013-002381
|
[17] |
施海昕,诸建超,严骏驰,等. 基于卷积神经网络和LSTM循环神经网络的客户复购预测方法[J]. 高技术通讯,2021,31(7):713-722. doi: 10.3772/j.issn.1002-0470.2021.07.004
SHI Haixin,ZHU Jianchao,YAN Junchi,et al. A prediction method of clients' repurchase based on CNN and LSTM RNN[J]. Chinese High Technology Letters,2021,31(7):713-722. doi: 10.3772/j.issn.1002-0470.2021.07.004
|
[18] |
周旭峰,王醒策,武仲科,等. 基于组合RNN网络的EMG信号手势识别[J]. 光学精密工程,2020,28(2):424-442.
ZHOU Xufeng,WANG Xingce,WU Zhongke,et al. Gesture recognition with EMG signals based on ensemble RNN[J]. Optics and Precision Engineering,2020,28(2):424-442.
|
[19] |
宋雅文,杨志豪,罗凌,等. 基于字符卷积神经网络的生物医学变异实体识别方法[J]. 中文信息学报,2021,35(5):63-69. doi: 10.3969/j.issn.1003-0077.2021.05.008
SONG Yawen,YANG Zhihao,LUO Ling,et al. Biomedical mutation entity recognition method based on character convolution neural network[J]. Journal of Chinese Information Processing,2021,35(5):63-69. doi: 10.3969/j.issn.1003-0077.2021.05.008
|
[20] |
ANGLES R,GUTIERREZ C. Survey of graph database models[J]. ACM Computing Surveys,2008,40(1):1-39.
|
[21] |
赵志宏,李晴,杨绍普,等. 基于BiLSTM与注意力机制的剩余使用寿命预测研究[J]. 振动与冲击,2022,41(6):44-50,196.
ZHAO Zhihong,LI Qing,YANG Shaopu,et al. Remaining useful life prediction based on BiLSTM and attention mechanism[J]. Journal of Vibration and Shock,2022,41(6):44-50,196.
|