Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
DAI Wenxiang, CHEN Lei, YAN Pengfei, et al. A deformation monitoring method for coal mine roadway based on 3D laser scanning[J]. Journal of Mine Automation,2023,49(10):61-67, 95.  doi: 10.13272/j.issn.1671-251x.2023010045
Citation: DAI Wenxiang, CHEN Lei, YAN Pengfei, et al. A deformation monitoring method for coal mine roadway based on 3D laser scanning[J]. Journal of Mine Automation,2023,49(10):61-67, 95.  doi: 10.13272/j.issn.1671-251x.2023010045

A deformation monitoring method for coal mine roadway based on 3D laser scanning

doi: 10.13272/j.issn.1671-251x.2023010045
  • Received Date: 2023-01-18
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-23
  • The traditional monitoring methods for coal mine roadway deformation have problems such as incomplete data collection, non intuitive data format, poor precision, and inability to achieve continuous monitoring of the entire roadway deformation. In order to solve the above problems, a deformation monitoring method for coal mine roadway based on 3D laser scanning is proposed. Firstly, the method uses 3D laser scanning technology to obtain real 3D point cloud data of coal mine roadways. Secondly, the deep learning model VoxelNet is used to detect and denoise 3D laser scanning data, converting unordered point cloud data into high-dimensional feature data. The Alphashape algorithm is used to fit the discrete points of the extracted roadway cross-section. The multi-dimensional difference calculation based on the difference method is used to obtain specific data of roadway deformation, achieving full coverage of roadway deformation monitoring in the mining area. The 3D laser scanning technology is applied to deformation monitoring of the 30507 working face in Tashan Coal Mine. The cross-sectional analysis and 3D overall analysis are conducted on the 3D point cloud data of the roadway. The analysis results indicate that the main deformation in the area can be directly observed through the relative deviation of the section contour of the second stage roadway. If the upper contour deviates inward, the roof will collapse. If the lower contour deviates outward, the floor will bulge. As the distance between the measuring point and the working face gets closer, the color of the attached color model leans towards red and blue. The darker the color, the greater the deformation of the roadway.

     

  • loading
  • [1]
    侯公羽,胡志宇,李子祥,等. 分布式光纤及光纤光栅传感技术在煤矿安全监测中的应用现状及展望[J]. 煤炭学报,2023,48(增刊1):96-110. doi: 10.13225/j.cnki.jccs.2022.0527

    HOU Gongyu,HU Zhiyu,LI Zixiang,et al. Present situation and prospect of coal mine safety monitoring based on fiber bragg grating and distributed optical fiber sensing technology[J]. Journal of China Coal Society,2023,48(S1):96-110. doi: 10.13225/j.cnki.jccs.2022.0527
    [2]
    王伟,弓仲标. 近距离煤层群煤柱下开采动压巷道围岩变形规律及控制[J]. 煤炭科学技术,2022,50(增刊2):143-152. doi: 10.13199/j.cnki.cst.2022-2089

    WANG Wei,GONG Zhongbiao. Deformation law and control of surrounding rock of dynamic pressure roadway under coal pillar in close seam group[J]. Coal Science and Technology,2022,50(S2):143-152. doi: 10.13199/j.cnki.cst.2022-2089
    [3]
    姜耀东,杨英明,马振乾,等. 大面积巷式采空区覆岩破坏机理及上行开采可行性分析[J]. 煤炭学报,2016,41(4):801-807. doi: 10.13225/j.cnki.jccs.2015.0775

    JIANG Yaodong,YANG Yingming,MA Zhenqian,et al. Breakage mechanism of roof strata above widespread mined-out area with roadway mining method and feasibility analysis of upward mining[J]. Journal of China Coal Society,2016,41(4):801-807. doi: 10.13225/j.cnki.jccs.2015.0775
    [4]
    余伟健,李可,芦庆和,等. 裂隙发育岩体巷道围岩工程特征与变形控制[J]. 煤炭学报,2021,46(11):3408-3418. doi: 10.13225/j.cnki.jccs.2020.2029

    YU Weijian,LI Ke,LU Qinghe,et al. Engineering characteristics and deformation control of roadways in fractured rock mass[J]. Journal of China Coal Society,2021,46(11):3408-3418. doi: 10.13225/j.cnki.jccs.2020.2029
    [5]
    杨景贺. 高应力软岩巷道变形破坏与控制机理数值模拟研究[J]. 煤炭科学技术,2019,47(8):52-58.

    YANG Jinghe. Numerical simulation study on deformation,failure and control mechanism of high stress soft rock roadway[J]. Coal Science and Technology,2019,47(8):52-58.
    [6]
    叶美图,梁义维,王锟. 矿井巷道表面位移激光测量装置研究[J]. 工矿自动化,2018,44(7):84-87.

    YE Meitu,LIANG Yiwei,WANG Kun. Research on laser measuring device of surface displacements of mine roadway[J]. Industry and Mine Automation,2018,44(7):84-87.
    [7]
    宋康磊,王宏图,万亮亮,等. 极薄煤层跨采下伏大巷变形破坏规律研究[J]. 煤矿安全,2021,52(3):49-54. doi: 10.13347/j.cnki.mkaq.2021.03.009

    SONG Kanglei,WANG Hongtu,WAN Liangliang,et al. Deformation and failure rules of underlying roadway of cross mining in ultra-thinness coal seam[J]. Safety in Coal Mines,2021,52(3):49-54. doi: 10.13347/j.cnki.mkaq.2021.03.009
    [8]
    荣耀,曹琼,安晓宇,等. 综采工作面三维激光扫描建模关键技术研究[J]. 工矿自动化,2022,48(10):82-87.

    RONG Yao,CAO Qiong,AN Xiaoyu,et al. Research on key technologies of 3D laser scanning modeling in fully mechanized working face[J]. Journal of Mine Automation,2022,48(10):82-87.
    [9]
    杜江丽,岳军红,陈建平,等. 基于三维激光扫描仪的矿区边坡变形监测数据的分析处理[J]. 矿业安全与环保,2021,48(1):75-79.

    DU Jiangli,YUE Junhong,CHEN Jianping,et al. Analysis and processing of slope deformation monitoring data in mining area based on 3D laser scanner[J]. Mining Safety & Environmental Protection,2021,48(1):75-79.
    [10]
    亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法[J]. 工矿自动化,2022,48(11):139-144. doi: 10.13272/j.issn.1671-251x.2022060047

    QI Yuhao,GUAN Shiyuan. Real-time 3D mapping method of fully mechanized working face based on laser SLAM[J]. Journal of Mine Automation,2022,48(11):139-144. doi: 10.13272/j.issn.1671-251x.2022060047
    [11]
    刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81-84,107.

    LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81-84,107.
    [12]
    王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术[J]. 工矿自动化,2020,46(5):39-42,53.

    WANG Feng. Concept,realization path and key technologies of intelligent mining based on transparent longwall face[J]. Industry and Mine Automation,2020,46(5):39-42,53.
    [13]
    邹筱瑜,黄鑫淼,王忠宾,等. 基于集成式因子图优化的煤矿巷道移动机器人三维地图构建[J]. 工矿自动化,2022,48(12):57-67,92. doi: 10.13272/j.issn.1671-251x.2022100041

    ZOU Xiaoyu,HUANG Xinmiao,WANG Zhongbin,et al. 3D map construction of coal mine roadway mobile robot based on integrated factor graph optimization[J]. Journal of Mine Automation,2022,48(12):57-67,92. doi: 10.13272/j.issn.1671-251x.2022100041
    [14]
    高晓进,李煜炜,张振金,等. 软岩巷道大变形双主动超前爆破预裂顶板防控技术[J]. 煤炭学报,2020,45(增刊2):589-598.

    GAO Xiaojin,LI Yuwei,ZHANG Zhenjin,et al. Prevention and control technology of pre-splitting roof by dual active advanced blasting in soft rock large deformation roadway[J]. Journal of China Coal Society,2020,45(S2):589-598.
    [15]
    王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117.

    WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117.
    [16]
    倪飞,王浩丞,杨艺卓,等. 三维激光扫描技术在高速公路运行非接触式变形监测中的应用[J]. 测绘通报,2021(3):164-166.

    NI Fei,WANG Haocheng,YANG Yizhuo,et al. Application of 3D laser scanning technology in contactless deformation monitoring for expressway operation[J]. Bulletin of Surveying and Mapping,2021(3):164-166.
    [17]
    杨洪涛,于印,许吉禅,等. 基于线扫描原理的煤矿巷道变形测量系统[J]. 工矿自动化,2022,48(7):113-117,148. doi: 10.13272/j.issn.1671-251x.2022060012

    YANG Hongtao,YU Yin,XU Jichan,et al. Coal mine roadway deformation measurement system based on line scanning principle[J]. Journal of Mine Automation,2022,48(7):113-117,148. doi: 10.13272/j.issn.1671-251x.2022060012
    [18]
    车守全,李涛,包从望,等. 矿区遥感图像去噪方法研究[J]. 工矿自动化,2022,48(1):113-118,124. doi: 10.13272/j.issn.1671-251x.2021090086

    CHE Shouquan,LI Tao,BAO Congwang,et al. Research on denoising method of remote sensing image in mining area[J]. Industry and Mine Automation,2022,48(1):113-118,124. doi: 10.13272/j.issn.1671-251x.2021090086
    [19]
    崔文,薛棋文,李庆玲,等. 基于三维点云地图和ESKF的无人车融合定位方法[J]. 工矿自动化,2022,48(9):116-122. doi: 10.13272/j.issn.1671-251x.17997

    CUI Wen,XUE Qiwen,LI Qingling,et al. Unmanned vehicle fusion positioning method based on 3D point cloud map and ESKF[J]. Journal of Mine Automation,2022,48(9):116-122. doi: 10.13272/j.issn.1671-251x.17997
    [20]
    徐亚楠,吴侃,张孝勇,等. 基于XJTUOM和Geomagic Studio的相似材料模型数据采集与提取[J]. 工矿自动化,2011,37(4):62-65.

    XU Yanan,WU Kan,ZHANG Xiaoyong,et al. Data collection and extraction of similar material model based on XJTUOM and Geomagic Studio[J]. Industry and Mine Automation,2011,37(4):62-65.
    [21]
    范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248-4260.

    FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248-4260.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (493) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return