Citation: | HAO Tianxuan, XU Xinge, ZHAO Lizhen. Research on image recognition methods for coal rock fractures[J]. Journal of Mine Automation,2023,49(10):68-74. doi: 10.13272/j.issn.1671-251x.2022120081 |
[1] |
刘建华,王生维,粟冬梅. 二连盆地群低煤阶煤储层裂隙地质建模与精细描述[J]. 煤炭科学技术,2022,50(5):198-207.
LIU Jianhua,WANG Shengwei,SU Dongmei. Geological modeling and fine description of fractures in low coal rank coal reservoirs of Erlian Basin Group[J]. Coal Science and Technology,2022,50(5):198-207.
|
[2] |
韩文龙,王延斌,倪小明,等. 多期构造运动对深部煤储层物性特征影响研究[J]. 煤炭科学技术,2021,49(10):208-216. doi: 10.13199/j.cnki.cst.2021.10.028
HAN Wenlong,WANG Yanbin,NI Xiaoming,et al. Study on impact of multi-period tectonic movement on deep coal reservoir physical properties[J]. Coal Science and Technology,2021,49(10):208-216. doi: 10.13199/j.cnki.cst.2021.10.028
|
[3] |
王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103-109,122.
WANG Dengke,WEI Qiang,WEI Jianping,et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology,2020,49(1):103-109,122.
|
[4] |
MAJIDIFARD H,ADU-GYAMFI Y,BUTTLAR W G. Deep machine learning approach to develop a new asphalt pavement condition index [J]. Construction and Building Materials,2020,247. DOI: 10.1016/j.conbuildmat.2020.118513.
|
[5] |
JU Huyan,LI Wei,TIGHE S,et al. Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network [J]. Automation in Construction,2019,107. DOI: 10.1016/j.autcon.2019.102946.
|
[6] |
刘勇,崔洪庆. 基于裂隙形态特征的煤层图像裂隙识别研究[J]. 工矿自动化,2017,43(10):59-64.
LIU Yong,CUI Hongqing. Research on coal-bed image fractures identification based on fracture shape characteristics[J]. Industry and Mine Automation,2017,43(10):59-64.
|
[7] |
孙月龙,崔洪庆,关金锋. 基于图像识别的煤层井下宏观裂隙观测[J]. 煤田地质与勘探,2017,45(5):19-22.
SUN Yuelong,CUI Hongqing,GUAN Jinfeng. Image recognition-based observation of macro fracture in coal seam in underground mine[J]. Coal Geology & Exploration,2017,45(5):19-22.
|
[8] |
覃木广. 基于matlab图像识别王庄矿后备区裂隙发育方位[J]. 采矿技术,2021,21(1):173-176.
QIN Muguang. Identification of fracture development orientation in Wangzhuang Coal Mine reserve area based on matlab image[J]. Mining Technology,2021,21(1):173-176.
|
[9] |
谢配红,谭海英. 基于图像识别技术对出露危岩体裂隙发育规律统计分析[J]. 煤炭技术,2021,40(7):66-67.
XIE Peihong,TAN Haiying. Statistical analysis of fracture development law of exposed dangerous rock mass based on image recognition technology[J]. Coal Technology,2021,40(7):66-67.
|
[10] |
张庆贺,陈晨,袁亮,等. 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报,2022,47(3):1208-1219.
ZHANG Qinghe,CHEN Chen,YUAN Liang,et al. Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society,2022,47(3):1208-1219.
|
[11] |
靳阳阳,韩现伟,周书宁,等. 图像增强算法综述[J]. 计算机系统应用,2021,30(6):18-27.
JIN Yangyang,HAN Xianwei,ZHOU Shuning,et al. Review on image enhancement algorithms[J]. Computer Systems & Applications,2021,30(6):18-27.
|
[12] |
LAURENT C,JEAN-PHILIPPE T,PIERRE C. The guided bilateral filter:when the joint/cross bilateral filter becomes robust[J]. IEEE Transactions on Image Processing,2015,24(4):1199-1208.
|
[13] |
陈春谋. 基于直方图均衡化与拉普拉斯的铅条图像增强算法[J]. 国外电子测量技术,2019,38(7):131-135.
CHEN Chunmou. Lead line image enhancement algorithm based on histogram equalization and Laplacian[J]. Foreign Electronic Measurement Technology,2019,38(7):131-135.
|
[14] |
王兆会,孙文超,水艳婷,等. 预制裂隙类岩石试件表面变形场演化与裂隙扩展机理研究[J/OL]. 煤炭科学技术:1-11 [2022-12-11]. https://doi.org/10.13199/j.cnki.cst.2022-1447.
WANG Zhaohui,SUN Wenchao,SHUI Yanting,et al. Surface deformation field and fracture propagation mechanism of rock-like samples with pre-existing fracture[J/OL]. Coal Science and Technology:1-11 [2022-12-11]. https://doi.org/10.13199/j.cnki.cst.2022-1447.
|
[15] |
曾勇,屈永华,宋金宝. 煤层裂隙系统及其对煤层气产出的影响[J]. 江苏地质,2000(2):91-94.
ZENG Yong,QU Yonghua,SONG Jinbao. The coal seam system of fissures and their influence on the occurrence of coal seams[J]. Jiangsu Geology,2000(2):91-94.
|
[16] |
SUN C,SHRIVASTAVA A,SINGH S,et al. Revisiting unreasonable effectiveness of data in deep learning era[C]. IEEE International Conference on Computer Vision,Venice,2017. DOI: 10.1109/ICCV.2017.97.
|
[17] |
HESTNESS J, NARANG S, ARDALANI N, et al. Deep learning scaling is predictable, empirically[EB/OL]. [2022-12-02]. https://doi.org/10.48550/arXiv.1712.00409.
HESTNESS J,NARANG S,ARDALANI N,et al. Deep learning scaling is predictable,empirically[EB/OL]. [2022-12-02]. https://doi.org/10.48550/arXiv.1712.00409.
|
[18] |
JABRI A,JOULIN A,MAATEN L,et al. Learning visual features from large weakly supervised data[C]. European Conference on Computer Vision, Amsterdam,2016. DOI: 10.1007/978-3-319-46478-7_5.
|
[19] |
薛珊,张振,吕琼莹,等. 基于卷积神经网络的反无人机系统图像识别方法[J]. 红外与激光工程,2020,49(7):250-257.
XUE Shan,ZHANG Zhen,LYU Qiongying,et al. Image recognition method of anti UAV system based on convolutional neural network[J]. Infrared and Laser Engineering,2020,49(7):250-257.
|
[20] |
周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.
|
[21] |
林丽,刘新,朱俊臻,等. 基于CNN的金属疲劳裂纹超声红外热像检测与识别方法研究[J]. 红外与激光工程,2022,51(3):475-483.
LIN Li,LIU Xin,ZHU Junzhen,et al. Research on vibrothermography detection and recognition method of metal fatigue cracks based on CNN[J]. Infrared and Laser Engineering,2022,51(3):475-483.
|
[22] |
杨凯,罗帅,王勇,等. 基于U−Net的列车轮对激光曲线提取[J]. 无损检测,2021,43(1):19-23.
YANG Kai,LUO Shuai,WANG Yong,et al. Laser curve extraction of train wheelset based on U-Net[J]. Nondestructive Testing,2021,43(1):19-23.
|