Citation: | HAO Hongtao, QIU Yuanyuan, DING Wenjie. A fault diagnosis method for roller based on small sample sound signals[J]. Journal of Mine Automation,2023,49(8):106-113. doi: 10.13272/j.issn.1671-251x.2022120007 |
[1] |
焦贺彬. 煤矿带式输送机智能化安全监测系统研究[J]. 煤矿机械,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058
JIAO Hebin. Research on intelligent safety monitoring system of belt conveyor in coal mine[J]. Coal Mine Machinery,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058
|
[2] |
付朕. 矿用带式输送机托辊远程故障诊断系统[D]. 徐州: 中国矿业大学, 2020.
FU Zhen. Remote fault diagnosis system of mine belt conveyor idler[D]. Xuzhou: China University of Mining and Technology, 2020.
|
[3] |
邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]. 南京: 东南大学, 2019.
SHAO Siyu. Methodologies for fault diagnosis of rotary machine based on deep learning[D]. Nanjing: Southeast University, 2019.
|
[4] |
吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32.
WU Wenzhen,CHENG Jiming,LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.
|
[5] |
贺志军,李军霞,张伟,等. 基于MFCC 特征和GWO−SVM的托辊故障诊断[J]. 机床与液压,2022,50(15):188-193.
HE Zhijun,LI Junxia,ZHANG Wei,et al. Roller fault diagnosis based on MFCC feature and GWO-SVM[J]. Machine Tool & Hydraulics,2022,50(15):188-193.
|
[6] |
陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
|
[7] |
WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi: 10.1109/TIE.2017.2774777
|
[8] |
宁夏大学. 带式输送机故障巡检载具及其控制系统和控制方法: CN201911098745.5[P]. 2019-11-12.
Ningxia University. Belt conveyor fault inspection vehicle and its control system and control method: CN201911098745.5[P]. 2019-11-12.
|
[9] |
WANG Zirui,WANG Jun,WANG Youren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing,2018,310(8):213-222.
|
[10] |
DING Yu,MA Liang,MA Jian,et al. A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions[J]. IEEE Access,2019,7:149736-149749. doi: 10.1109/ACCESS.2019.2947194
|
[11] |
何强,唐向红,李传江,等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004
HE Qiang,TANG Xianghong,LI Chuanjiang,et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004
|
[12] |
吴定会,方钦,吴楚宜. 基于数据生成与迁移学习的轴承小样本故障诊断[J]. 机械传动,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023
WU Dinghui,FANG Qin,WU Chuyi. Bearing small sample fault diagnosis based on data generation and transfer learning[J]. Journal of Mechanical Transmission,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023
|
[13] |
蒋杰. 基于深度学习的车型识别算法研究[D]. 北京: 北方工业大学, 2018.
JIANG Jie. Vehicle recognition algorithm based on deep learning[D]. Beijing: North China University of Technology, 2018.
|
[14] |
ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2022-11-25].https://arxiv.org/abs/1710.09412.
|
[15] |
DVORNIK N, MAIRAL J, SCHMID C. Modeling visual context is key to augmenting object detection datasets[EB/OL]. [2022-11-25]. https://arxiv.org/abs/1807.07428.
|
[16] |
LEE W J,WU Haiyue,HUANG Aihua,et al. Learning via acceleration spectrograms of a DC motor system with application to condition monitoring[J]. The International Journal of Advanced Manufacturing Technology,2020,106(3/4):1-14.
|
[17] |
BERA A, DUTTA A, DHARA A K. Deep learning based fault classification algorithm for roller bearings using time-frequency localized features[C]. International Conference on Computing, Communication, and Intelligent Systems, Greater Noida, 2021.
|
[18] |
LI Pengfei,YUAN Hejin,WANG Yu,et al. Pumping unit fault analysis method based on wavelet transform time-frequency diagram and CNN[J]. International Core Journal of Engineering,2020,6(1):182-188.
|
[19] |
XU Yang, LI Zhixiong, WANG Shuqing, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169(6). DOI: 10.1016/j.measurement.2020.108502.
|
[20] |
YUAN Zhuang, ZHANG Laibin, DUAN Lixiang, et al. Intelligent fault diagnosis of rolling element bearings based on HHT and CNN[C]. Prognostics and System Health Management Conference, Chongqing, 2018.
|
[21] |
PHAM M T, KIM J M, KIM C H. Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram[J]. Applied Sciences, 2020, 10(18). DOI: 10.3390/app10186385.
|
[22] |
HE Zhiyi,SHAO Haidong,ZHANG Xiaoyang,et al. Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples[J]. IEEE Access,2019,7:115368-115377. doi: 10.1109/ACCESS.2019.2936243
|
[23] |
WANG Chongyu,XIE Yonghui,ZHANG Di. Deep learning for bearing fault diagnosis under different working loads and non-fault location point[J]. Journal of Low Frequency Noise,Vibration and Active Control,2021,40(1):588-600. doi: 10.1177/1461348419889511
|
[24] |
WANG Xin, MAO Dongxing, LI Xiaodong. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173. DOI: 10.1016/j.measurement.2020.108518.
|
[25] |
MINERVINI M, HAUSMSN S, FROSINI L, et al. Transfer learning technique for automatic bearing fault diagnosis in induction motors[C]. IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Dallas, 2021.
|