Citation: | LI Xuhong, LI Tongtong, WANG Anyi. Research on mine wireless signal detection method based on dual path network[J]. Journal of Mine Automation,2023,49(5):120-126. doi: 10.13272/j.issn.1671-251x.2022100052 |
[1] |
ZHANG Hui,ZHU Mengzhi,LI Xingwang,et al. Very low frequency propagation characteristics analysis in coal mines[J]. IEEE Access,2020(8):95483-95490.
|
[2] |
张帆,李闯,李昊,等. 面向智能矿山与新工科的数字孪生技术研究[J]. 工矿自动化,2020,46(5):15-20. doi: 10.13272/j.issn.1671-251x.2020040042
ZHANG Fan,LI Chuang,LI Hao,et al. Research on digital twin technology for smart mine and new engineering discipline[J]. Industry and Mine Automation,2020,46(5):15-20. doi: 10.13272/j.issn.1671-251x.2020040042
|
[3] |
ZHENG Shilian,CHEN Shichuan,YANG Xiaoniu. Deepreceiver:a deep learning-based intelligent receiver for wireless communications in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking,2020,7(1):5-20.
|
[4] |
LUONG T V,KO Y,VIEN N A,et al. Deep learning-based detector for OFDM-IM[J]. IEEE Wireless Communications Letters,2019,8(4):1159-1162. doi: 10.1109/LWC.2019.2909893
|
[5] |
ZHAO Zhongyuan,VURAN M C,GUO Fujuan,et al. Deep-waveform:a learned OFDM receiver based on deep complex-valued convolutional networks[J]. IEEE Journal on Selected Areas in Communications,2021,39(8):2407-2420. doi: 10.1109/JSAC.2021.3087241
|
[6] |
姚善化. 基于镜像法的矿井隧道电磁波多径信道模型[J]. 工矿自动化,2017,43(4):46-49. doi: 10.13272/j.issn.1671-251x.2017.04.011
YAO Shanhua. Electromagnetic wave multipath channel model based on image method in mine tunnel[J]. Industry and Mine Automation,2017,43(4):46-49. doi: 10.13272/j.issn.1671-251x.2017.04.011
|
[7] |
LIU Boyan, YANG Xiaohui, CHEN Zifeng, et al. The Internet of Things(IoT) system for bolt looseness detection in coal mines[C]. The 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Xi'an, 2022: 293-296.
|
[8] |
王安义,李立. 基于高阶累积量和DNN模型的井下信号识别方法[J]. 工矿自动化,2020,46(2):82-87. doi: 10.13272/j.issn.1671-251x.2019100064
WANG Anyi,LI Li. Underground signal recognition method based on higher-order cumulants and DNN model[J]. Industry and Mine Automation,2020,46(2):82-87. doi: 10.13272/j.issn.1671-251x.2019100064
|
[9] |
HAO Ye,LI G Y,JUANG B H F. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters,2018,7(1):114-117. doi: 10.1109/LWC.2017.2757490
|
[10] |
LIU Hongfu,WEI Ziping,ZHANG Hengsheng,et al. Tiny machine learning (Tiny-ML) for efficient channel estimation and signal detection[J]. IEEE Transactions on Vehicular Technology,2022,71(6):6795-6800. doi: 10.1109/TVT.2022.3163786
|
[11] |
YI Xuemei,ZHONG Gaijun. Deep learning for joint channel estimation and signal detection in OFDM systems[J]. IEEE Communications Letters,2020,24(12):2780-2784. doi: 10.1109/LCOMM.2020.3014382
|
[12] |
FELIX A, CAMMERER S, DORNER S, et al. OFDM-autoencoder for end-to-end learning of communications systems[C]. IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018: 1-5.
|
[13] |
BALEVI E,ANDREWS J G. One-bit OFDM receivers via deep learning[J]. IEEE Transactions on Communications,2019,67(6):4326-4336. doi: 10.1109/TCOMM.2019.2903811
|
[14] |
CHEN Xiaolong, JIANG Qiaowen, SU Ningyuan, et al. LFM signal detection and estimation based on deep convolutional neural network[C]. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, 2019: 753-758.
|
[15] |
DONG Yaning, WU Chuanzhang, ZHU Huizhu, et al. A weak signal detection method based on spatial spectrum-LSTM neural network[C]. The 5th International Conference on Information Communication and Signal Processing (ICICSP), Shenzhen, 2022: 1-6.
|
[16] |
NIE Donghu,XIE Kai,ZHOU Feng,et al. A correlation detection method of low SNR based on multi-channelization[J]. IEEE Signal Processing Letters,2020,27:1375-1379. doi: 10.1109/LSP.2020.3013769
|
[17] |
LI Chun, ZHAO Zhijin, CHEN Ying. Detection algorithm of frequency hopping signals based on S transform and deep learning[C]. 16th IEEE International Conference on Signal Processing (ICSP), Beijing, 2022: 310-313.
|
[18] |
GATERA O, SIBOMANA L, LLHAN H, et al. On analysis of signal detection in relays networks over time-varying rayleigh channels[C]. International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, 2019: 1-5.
|
[19] |
ZHANG Zhaoming, CHENG Baixiao, YANG Minglei, et al. Target detection of optimum frequencies selection based on time reversal[C]. The 5th International Conference on Frontiers of Signal Processing (ICFSP), Marseille, 2019: 40-44.
|
[20] |
崔建华,袁正道,王忠勇,等. 基于隐聚类和狄利特雷过程的大规模MIMO-OFDM接收机设计[J]. 电子学报,2019,47(12):2515-2523.
CUI Jianhua,YUAN Zhengdao,WANG Zhongyong,et al. Massive MIMO-OFDM receiver design based on hidden cluster hypothesis and dirichlet process[J]. Acta Electronica Sinica,2019,47(12):2515-2523.
|
[21] |
YANG Aiping, WANG Haixin, JI Zhong, et al. Dual-path in dual-path network for single image dehazing[C]. Teenty-Eighth International Joint Conference on Artificial Intelligence, 2017: 4627-4634.
|