Citation: | ZHAI Xiaowei, LUO Jinlei, ZHANG Yuchen, et al. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Journal of Mine Automation,2023,49(1):28-35, 98. doi: 10.13272/j.issn.1671-251x.2022090032 |
[1] |
邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125. doi: 10.13347/j.cnki.mkaq.2020.10.018
DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines,2020,51(10):118-125. doi: 10.13347/j.cnki.mkaq.2020.10.018
|
[2] |
王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57-64. doi: 10.13225/j.cnki.jccs.YG20.1798
WANG Deming,SHAO Zhenlu,ZHU Yunfei. Several scientific issues on major thermodynamic disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57-64. doi: 10.13225/j.cnki.jccs.YG20.1798
|
[3] |
王德明. 煤矿热动力灾害及特性[J]. 煤炭学报,2018,43(1):137-142. doi: 10.13225/j.cnki.jccs.2017.4300
WANG Deming. Thermodynamic disaster in coal mine and its characteristics[J]. Journal of China Coal Society,2018,43(1):137-142. doi: 10.13225/j.cnki.jccs.2017.4300
|
[4] |
郭庆. 采空区煤自燃预警技术及应用研究[D]. 徐州: 中国矿业大学, 2021.
GUO Qing. Research on early warning technology and application of coal spontaneous combustion in goaf[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[5] |
ONIFADE M,GENC B,BADA S. Spontaneous combustion liability between coal seams:a thermogravimetric study[J]. International Journal of Mining Science and Technology,2020,30(5):691-698. doi: 10.1016/j.ijmst.2020.03.006
|
[6] |
邓军,雷昌奎,曹凯,等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报,2018,43(10):2800-2808. doi: 10.13225/j.cnki.jccs.2018.0710
DENG Jun,LEI Changkui,CAO Kai,et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society,2018,43(10):2800-2808. doi: 10.13225/j.cnki.jccs.2018.0710
|
[7] |
DENG Jun,CHEN Weile,WANG Caiping,et al. Prediction model for coal spontaneous combustion based on SA-SVM.[J]. ACS Omega,2021,6(17):11307-11318. doi: 10.1021/acsomega.1c00169
|
[8] |
周旭,朱毅,张九零,等. 基于PSO−XGBoost的煤自燃程度预测研究[J]. 矿业安全与环保,2022,49(6):79-84.
ZHOU Xu,ZHU Yi,ZHANG Jiuling,et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety & Environmental Protection,2022,49(6):79-84.
|
[9] |
彭志江. 面向小样本数据的特征分析技术研究[D]. 成都: 电子科技大学, 2021.
PENG Zhijiang. Feature analysis technology for small sample data[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
[10] |
郑晓亮. 基于瓦斯含量法的煤与瓦斯突出预测关键技术研究[D]. 淮南: 安徽理工大学, 2018.
ZHENG Xiaoliang. Research on key technology of coal and gas outburst prediction based on gas content method[D]. Huainan: Anhui University of Science and Technology, 2018.
|
[11] |
陈娟,王献雨,罗玲玲,等. 缺失值填补效果:机器学习与统计学习的比较[J]. 统计与决策,2020,36(17):28-32. doi: 10.13546/j.cnki.tjyjc.2020.17.006
CHENG Juan,WANG Xianyu,LUO Lingling,et al. Comparison of machine learning and statistical learning in the imputation of missing values[J]. Statistics & Decision,2020,36(17):28-32. doi: 10.13546/j.cnki.tjyjc.2020.17.006
|
[12] |
陈利成,陈建宏. 基于数据填补−机器学习的煤与瓦斯突出预测效果研究[J]. 中国安全生产科学技术,2022,18(9):69-74.
CHEN Licheng,CHEN Jianhong. Study on prediction effect of coal and gas outburst based on data imputation and machine learning[J]. Journal of Safety Science and Technology,2022,18(9):69-74.
|
[13] |
郑晓亮,来文豪,薛生. MI和SVM算法在煤与瓦斯突出预测中的应用[J]. 中国安全科学学报,2021,31(1):75-80. doi: 10.16265/j.cnki.issn1003-3033.2021.01.011
ZHENG Xiaoliang,LAI Wenhao,XUE Sheng. Application of MI and SVM in coal and gas outburst prediction[J]. China Safety Science Journal,2021,31(1):75-80. doi: 10.16265/j.cnki.issn1003-3033.2021.01.011
|
[14] |
LI Zhuoxuan,SHI Xinli,CAO Jinde,et al. CPSO-XGBoost segmented regression model for asphalt pavement deflection basin area prediction[J]. Science China (Technological Sciences),2022,65(7):1470-1481. doi: 10.1007/s11431-021-1972-7
|
[15] |
任万兴,郭庆,石晶泰,等. 基于标志气体统计学特征的煤自燃预警指标构建[J]. 煤炭学报,2021,46(6):1747-1758. doi: 10.13225/j.cnki.jccs.HZ21.0006
REN Wanxing,GUO Qing,SHI Jingtai,et al. Construction of early warning indicators for coal spontaneous combustion based on statistical characteristics of index gases[J]. Journal of China Coal Society,2021,46(6):1747-1758. doi: 10.13225/j.cnki.jccs.HZ21.0006
|