Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WEN Jiayan, WEN Haichao, CHENG Yang, et al. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation,2023,49(2):94-101.  doi: 10.13272/j.issn.1671-251x.2022080008
Citation: WEN Jiayan, WEN Haichao, CHENG Yang, et al. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation,2023,49(2):94-101.  doi: 10.13272/j.issn.1671-251x.2022080008

Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm

doi: 10.13272/j.issn.1671-251x.2022080008
  • Received Date: 2022-08-02
  • Rev Recd Date: 2023-02-04
  • Available Online: 2023-02-27
  • In order to improve truck transport efficiency, reduce carbon emissions and save transport costs in open-pit mines, pure electric trucks are taken as the research object. The objective function is transportation cost, total queuing time (including truck charging time, operation time and maintenance waiting time in the production process), and ore grade deviation. The constraints include the crushing capacity of the crushing site, mining capacity of the mining site, loading capacity, ore grade error limit, vehicle charging pile selection and charging limit. The optimization model of low carbon transportation scheduling of open-pit is established. The gray wolf optimization (GWO) and non-dominated sorting genetic algorithm-II (NSGA-II) have been used to solve the low-carbon transportation scheduling model for pure electric mining trucks in open-pit mines. The former is prone to get trapped in local optimum while the latter is likely to achieve a global optimum but converges slowly. In order to solve the above problems, a GWO-NSGA-II hybrid algorithm is proposed. The hybrid algorithm introduces three genetic operations of NSGA-II, selection, crossover and mutation, into the GWO algorithm to effectively prevent the algorithm from falling into local optimum. In order to improve the stability of the global convergence of the algorithm, hunting and attack operations are introduced into the elite retention strategy of NSGA-II. Five standard test functions are used to verify that the hybrid algorithm improves the stability while ensuring the convergence. The example analysis shows that, compared with NSGA-II and GWO, the hybrid algorithm improves the optimization speed by 48.7% and 27.1% respectively. The hybrid algorithm improves the optimization precision by 17.1% and 9.3% respectively. The hybrid algorithm reduces the number of trucks, carbon emissions, transportation distance and transportation costs.

     

  • loading
  • [1]
    王忠鑫,辛凤阳,陈洪亮,等. 我国露天矿智能运输技术现状及发展趋势[J]. 工矿自动化,2022,48(6):15-26.

    WANG Zhongxin,XIN Fengyang,CHEN Hongliang,et al. Current status and development trend of intelligent transportation technology in China's open-pit mines[J]. Journal of Mine Automation,2022,48(6):15-26.
    [2]
    赵浩,毛开江,曲业明,等. 我国露天煤矿无人驾驶及新能源卡车发展现状与关键技术[J]. 中国煤炭,2021,47(4):45-50. doi: 10.19880/j.cnki.ccm.2021.04.007

    ZAHO Hao,MAO Kaijiang,QU Yeming,et al. Development status and key technology of driverless and new energy trucks in open-pit coal mine in China[J]. China Coal,2021,47(4):45-50. doi: 10.19880/j.cnki.ccm.2021.04.007
    [3]
    苏楷,门飞. 露天矿运输调度问题求解的自适应果蝇优化算法[J]. 金属矿山,2017,46(11):172-176. doi: 10.3969/j.issn.1001-1250.2017.11.034

    SU Kai,MEN Fei. Adaptive fruit fly optimization algorithm for solving open-pit hauling dispatching optimization problem[J]. Metal Mine,2017,46(11):172-176. doi: 10.3969/j.issn.1001-1250.2017.11.034
    [4]
    程平, 李晓光, 顾清华, 等. 露天矿新能源纯电动卡车的智能调度优化及应用[J/OL]. 金属矿山: 1-11[2022-05-04]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html.

    CHENG Ping, LI Xiaoguang, GU Qinghua, et al. Intelligent scheduling optimization and application of new energy electric truck in open-pit mine[J/OL]. Metal Mine: 1-11[2022-05-04]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html.
    [5]
    李勇,胡乃联,李国清. 基于改进粒子群算法的露天矿运输调度优化[J]. 中国矿业,2013,22(4):98-101,105. doi: 10.3969/j.issn.1004-4051.2013.04.027

    LI Yong,HU Nailian,LI Guoqing. Open-pit hauling dispatching optimization based on improved PSO algorithm[J]. China Mining Magazine,2013,22(4):98-101,105. doi: 10.3969/j.issn.1004-4051.2013.04.027
    [6]
    彭程,薛伟宁,黄轶. 露天矿运输问题的模拟退火优化[J]. 中国矿业,2018,27(4):138-141.

    PENG Cheng,XUE Weining,HUANG Yi. Simulated annealing algorithm for the open-pit mine transportation problem[J]. China Mining Magazine,2018,27(4):138-141.
    [7]
    彭程,隋晓梅,王辉俊. 用于求解露天矿运输问题的改进差分进化算法[J]. 工矿自动化,2018,44(4):104-108. doi: 10.13272/j.issn.1671-251x.2017100044

    PENG Cheng,SUI Xiaomei,WANG Huijun. Improved differential evolution algorithm for solving open-pit mine transportation problem[J]. Industry and Mine Automation,2018,44(4):104-108. doi: 10.13272/j.issn.1671-251x.2017100044
    [8]
    鞠兴军,李林,刘光伟. 基于遗传算法的神经网络在露天矿卡车调度系统中的应用研究[J]. 露天采矿技术,2009,24(6):31-33. doi: 10.3969/j.issn.1671-9816.2009.06.012

    JU Xingjun,LI Lin,LIU Guangwei. Application research on truck dispatching system based on neural network of genetic algorithm in surface mine[J]. Opencast Mining Technology,2009,24(6):31-33. doi: 10.3969/j.issn.1671-9816.2009.06.012
    [9]
    刘浩洋. 基于改进蚁群算法的露天矿卡车优化调度研究[D]. 西安: 西安建筑科技大学, 2013.

    LIU Haoyang. Strip mine truck optimization scheduling research based on improved ant colony algorithm[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
    [10]
    蒋浩,唐欢容,郑金华. 一种基于快速排序的快速多目标遗传算法[J]. 计算机工程与应用,2005,41(30):46-48. doi: 10.3321/j.issn:1002-8331.2005.30.015

    JIANG Hao,TANG Huanrong,ZHENG Jinhua. A fast multi-objective genetic algorithm based on quick sort[J]. Computer Engineering and Applications,2005,41(30):46-48. doi: 10.3321/j.issn:1002-8331.2005.30.015
    [11]
    门飞,蒋欣. 求解露天矿低碳运输调度问题的改进灰狼优化算法[J]. 工矿自动化,2020,46(12):90-94. doi: 10.13272/j.issn.1671-251x.2020070049

    MEN Fei,JIANG Xin. Improved gray wolf optimization algorithm for solving low-carbon transportation scheduling problem in open-pit mines[J]. Industry and Mine Automation,2020,46(12):90-94. doi: 10.13272/j.issn.1671-251x.2020070049
    [12]
    MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69:46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [13]
    SAREMI S,MIRJALILI S Z,MIRJALILI S M. Evolutionary population dynamics and grey wolf optimizer[J]. Neural Computing and Applications,2015,26(5):1257-1263. doi: 10.1007/s00521-014-1806-7
    [14]
    张明,顾清华,李发本,等. 基于多目标遗传算法的露天矿卡车调度优化研究[J]. 金属矿山,2019,48(6):157-162. doi: 10.19614/j.cnki.jsks.201906028

    ZHANG Ming,GU Qinghua,LI Faben,et al. Research of open-pit mine truck dispatching optimization based on multi-objective genetic algorithm[J]. Metal Mine,2019,48(6):157-162. doi: 10.19614/j.cnki.jsks.201906028
    [15]
    吕新桥,廖天龙. 基于灰狼优化算法的置换流水线车间调度[J]. 武汉理工大学学报,2015,37(5):111-116.

    LYU Xinqiao,LIAO Tianlong. Permutation flow-shop scheduling based on the grey wolf optimizer[J]. Journal of Wuhan University of Technology,2015,37(5):111-116.
    [16]
    冯麟皓,方喜峰,李俊. 基于灰狼算法的多目标车间调度优化[J]. 组合机床与自动化加工技术,2023(1):168-172. doi: 10.13462/j.cnki.mmtamt.2023.01.038

    FENG Linhao,FANG Xifeng,LI Jun. Multi-objective job shop scheduling optimization based on gray wolf algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2023(1):168-172. doi: 10.13462/j.cnki.mmtamt.2023.01.038
    [17]
    王敏,唐明珠. 一种新型非线性收敛因子的灰狼优化算法[J]. 计算机应用研究,2016,33(12):3648-3653. doi: 10.3969/j.issn.1001-3695.2016.12.029

    WANG Min,TANG Mingzhu. Novel grey wolf optimization algorithm based on nonlinear convergence factor[J]. Application Research of Computers,2016,33(12):3648-3653. doi: 10.3969/j.issn.1001-3695.2016.12.029
    [18]
    龙文,赵东泉,徐松金. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用,2015,35(9):2590-2595. doi: 10.11772/j.issn.1001-9081.2015.09.2590

    LONG Wen,ZHAO Dongquan,XU Songjin. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications,2015,35(9):2590-2595. doi: 10.11772/j.issn.1001-9081.2015.09.2590
    [19]
    王琴,杨信丰,李楠,等. 不确定环境下的危险品运输车辆路径优化[J]. 计算机工程与应用,2022,58(15):309-316. doi: 10.3778/j.issn.1002-8331.2201-0137

    WANG Qin,YANG Xinfeng,LI Nan,et al. Route optimization of hazardous materials transportation vehicles in uncertain environment[J]. Computer Engineering and Applications,2022,58(15):309-316. doi: 10.3778/j.issn.1002-8331.2201-0137
    [20]
    EI-GAAFARY A A M,MOHAMED Y S,HEMEIDA A M,et al. Grey wolf optimization for multi input multi output system[J]. Universal Journal of Communications and Network,2015,3(1):1-6. doi: 10.13189/ujcn.2015.030101
    [21]
    林海. 城市纯电动车配送路径优化研究[D]. 西安: 长安大学, 2018.

    LIN Hai. Optimization of the urban vehicle routing problem of pure electric vehicles[D]. Xi'an: Chang'an University, 2018.
    [22]
    SALIM F,JULES T,YASH G. A new algorithm using front prediction and NSGA-II for solving two and three-objective optimization problems[J]. Optimization and Engineering,2015(4):713-736.
    [23]
    乔俊飞,李霏,杨翠丽. 一种基于均匀分布策略的NSGAⅡ算法[J]. 自动化学报,2019,45(7):1325-1334. doi: 10.16383/j.aas.c180085

    QIAO Junfei,LI Fei,YANG Cuili. An NSGA II algorithm based on uniform distribution strategy[J]. Acta Automatica Sinica,2019,45(7):1325-1334. doi: 10.16383/j.aas.c180085
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (226) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return