Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WU Wenzhen, CHENG Jiming, LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071
Citation: WU Wenzhen, CHENG Jiming, LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071

Audio fault diagnosis method of mine belt conveyor roller

doi: 10.13272/j.issn.1671-251x.2022070071
  • Received Date: 2022-07-26
  • Rev Recd Date: 2022-09-08
  • Available Online: 2022-09-01
  • In the existing fault diagnosis method of mine belt conveyor roller, the roller signal is decomposed and converted to the frequency domain. The fault diagnosis is carried out by extracting characteristics from the frequency domain. The common signal decomposition methods include wavelet decomposition and empirical mode decomposition. The methods have the problems of difficult selection of wavelet basis, frequency spectrum aliasing and endpoint effect, resulting in low fault diagnosis accuracy rate. In view of the above problems, an audio fault diagnosis method of mine belt conveyor roller mine based on variational modal decomposition (VMD)-BP neural network is proposed. Firstly, the audio signal of the roller along the mine belt conveyor is collected by the audio sensor. The audio signal is preprocessed to suppress the noise signal in the audio information. Secondly, VMD is used to decompose the audio signal into different IMF (intrinsic mode function) components according to the center frequency. The method extracts characteristic values of the kurtosis, gravity frequency, frequency standard deviation of each IMF component. Finally, the characteristic values are input into the trained BP neural network. According to the difference in IMF component characteristic values, it is possible to diagnose the mine belt conveyor roller fault through audio, and determine the position of the faulty roller according to the sensor number corresponding to the audio signal. The audio information of the roller of the belt conveyor collected in a coal mine is used to analyze and verify the audio fault diagnosis method of mine belt conveyor roller based on VMD-BP neural network. The results show that the method can avoid spectrum aliasing and endpoint effect in the decomposition process when decomposing and extracting audio signal characteristics. The overall fault diagnosis accuracy rate reaches 96.15%. Compared with the fault diagnosis method based on BP neural network and the fault diagnosis method based on wavelet decomposition and BP neural network, the proposed method has improved the fault diagnosis accuracy rate by 26.92% and 15.38% respectively. The false detection rate has also been significantly reduced.

     

  • loading
  • [1]
    王建勋. 煤矿输送带传输故障实时监测技术[J]. 工矿自动化,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012

    WANG Jianxun. Real-time fault monitoring technology for coal mine conveying belt[J]. Industry and Mine Automation,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012
    [2]
    张丽. 带式输送机滚筒温度检测装置设计[J]. 工矿自动化,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018

    ZHANG Li. Design of temperature detection device for drum of belt conveyor[J]. Industry and Mine Automation,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018
    [3]
    杨祥,田慕琴,李璐,等. 矿用带式输送机驱动滚筒轴承振动信号降噪方法[J]. 工矿自动化,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013

    YANG Xiang,TIAN Muqin,LI Lu,et al. Vibration signal denoising method for drive roller bearing of mine-used belt conveyor[J]. Industry and Mine Automation,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013
    [4]
    孙国栋,王俊豪,徐昀,等. CEEMD−WVD 多尺度时频图像的滚动轴承故障诊断[J]. 机械科学与技术,2020,39(5):688-694.

    SUN Guodong,WANG Junhao,XU Yun,et al. Rolling bearing fault diagnosis based on CEEMD-WVD multi-scale time-frequency image[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(5):688-694.
    [5]
    彭程程. 基于二阶瞬态提取变换的滚动轴承故障特征提取方法研究[J]. 机电工程,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004

    PENG Chengcheng. Fault feature extraction method for rolling bearing based on STET[J]. Journal of Mechanical & Electrical Engineering,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004
    [6]
    韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019

    HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019
    [7]
    SONG Liuyang,WANG Huaqing,CHEN Peng. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(8):1887-1899. doi: 10.1109/TIM.2018.2806984
    [8]
    JIANG Xiaopeng, CAO Guangqing. Belt conveyor roller fault audio detection based on the wavelet neural network[EB/OL]. [2022-05-16]. https://ieeexplore. ieee.org/document/73781202015.
    [9]
    曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035

    CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035
    [10]
    陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004

    CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
    [11]
    YU Dejie,CHENG Junsheng,YANG Yu. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing,2005,19(2):259-270. doi: 10.1016/S0888-3270(03)00099-2
    [12]
    蒋留兵,韦洪浪,管四海,等. 基于EEMD和HOC 的超宽带雷达生命探测算法研究[J]. 现代雷达,2015,37(5):25-30.

    JIANG Liubing,WEI Honglang,GUAN Sihai,et al. A study on UWB vital signal detection method based on EEMD and HOC[J]. Modern Radar,2015,37(5):25-30.
    [13]
    LEI Yaguo,HE Zhengjia,ZI Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications,2011,38(6):7334-7341. doi: 10.1016/j.eswa.2010.12.095
    [14]
    DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2013,62(3):531-544.
    [15]
    凌标灿,杨佳滨. 电机滚动轴承故障诊断中BP与RBF神经网络的比较[J]. 华北科技学院学报,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010

    LING Biaocan,YANG Jiabin. Comparison of BP and RBF neural networks in fault diagnosis of motor rolling bearings[J]. Journal of North China Institute of Science and Technology,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (413) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return