Citation: | WU Wenzhen, CHENG Jiming, LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32. doi: 10.13272/j.issn.1671-251x.2022070071 |
[1] |
王建勋. 煤矿输送带传输故障实时监测技术[J]. 工矿自动化,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012
WANG Jianxun. Real-time fault monitoring technology for coal mine conveying belt[J]. Industry and Mine Automation,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012
|
[2] |
张丽. 带式输送机滚筒温度检测装置设计[J]. 工矿自动化,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018
ZHANG Li. Design of temperature detection device for drum of belt conveyor[J]. Industry and Mine Automation,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018
|
[3] |
杨祥,田慕琴,李璐,等. 矿用带式输送机驱动滚筒轴承振动信号降噪方法[J]. 工矿自动化,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013
YANG Xiang,TIAN Muqin,LI Lu,et al. Vibration signal denoising method for drive roller bearing of mine-used belt conveyor[J]. Industry and Mine Automation,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013
|
[4] |
孙国栋,王俊豪,徐昀,等. CEEMD−WVD 多尺度时频图像的滚动轴承故障诊断[J]. 机械科学与技术,2020,39(5):688-694.
SUN Guodong,WANG Junhao,XU Yun,et al. Rolling bearing fault diagnosis based on CEEMD-WVD multi-scale time-frequency image[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(5):688-694.
|
[5] |
彭程程. 基于二阶瞬态提取变换的滚动轴承故障特征提取方法研究[J]. 机电工程,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004
PENG Chengcheng. Fault feature extraction method for rolling bearing based on STET[J]. Journal of Mechanical & Electrical Engineering,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004
|
[6] |
韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019
HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019
|
[7] |
SONG Liuyang,WANG Huaqing,CHEN Peng. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(8):1887-1899. doi: 10.1109/TIM.2018.2806984
|
[8] |
JIANG Xiaopeng, CAO Guangqing. Belt conveyor roller fault audio detection based on the wavelet neural network[EB/OL]. [2022-05-16]. https://ieeexplore. ieee.org/document/73781202015.
|
[9] |
曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035
CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035
|
[10] |
陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
|
[11] |
YU Dejie,CHENG Junsheng,YANG Yu. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing,2005,19(2):259-270. doi: 10.1016/S0888-3270(03)00099-2
|
[12] |
蒋留兵,韦洪浪,管四海,等. 基于EEMD和HOC 的超宽带雷达生命探测算法研究[J]. 现代雷达,2015,37(5):25-30.
JIANG Liubing,WEI Honglang,GUAN Sihai,et al. A study on UWB vital signal detection method based on EEMD and HOC[J]. Modern Radar,2015,37(5):25-30.
|
[13] |
LEI Yaguo,HE Zhengjia,ZI Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications,2011,38(6):7334-7341. doi: 10.1016/j.eswa.2010.12.095
|
[14] |
DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2013,62(3):531-544.
|
[15] |
凌标灿,杨佳滨. 电机滚动轴承故障诊断中BP与RBF神经网络的比较[J]. 华北科技学院学报,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010
LING Biaocan,YANG Jiabin. Comparison of BP and RBF neural networks in fault diagnosis of motor rolling bearings[J]. Journal of North China Institute of Science and Technology,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010
|