Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
DAI Wei, WANG Yudong, DONG Liang, et al. Development and exploration of intelligent dense medium separation technology for coal[J]. Journal of Mine Automation,2022,48(11):20-26, 44.  doi: 10.13272/j.issn.1671-251x.2022060106
Citation: DAI Wei, WANG Yudong, DONG Liang, et al. Development and exploration of intelligent dense medium separation technology for coal[J]. Journal of Mine Automation,2022,48(11):20-26, 44.  doi: 10.13272/j.issn.1671-251x.2022060106

Development and exploration of intelligent dense medium separation technology for coal

doi: 10.13272/j.issn.1671-251x.2022060106
  • Received Date: 2022-06-29
  • Rev Recd Date: 2022-11-07
  • Available Online: 2022-11-04
  • Dense medium separation, the most widely used coal preparation process, is moving from automation and informatization to intelligence. At present, the intelligent construction of dense medium coal preparation plant only realizes partial intelligent construction. It is deficient in the whole intelligent construction. The intelligent development of the core production equipment (dense medium cyclone and shallow groove) is insufficient. In order to solve the above problems, the research status of intelligent dense medium separation is described from three aspects of intelligent perception, intelligent control and intelligent optimization decision. The challenges faced by dense medium separation in the process of developing from automation to intelligence are analyzed. The challenges include the unstable operation caused by the fluctuation of raw coal quality, the high complexity of dense medium separation, and the limitations of intelligent construction of dense medium coal preparation plant. In order to promote the intelligence and greening of the dense medium separation industry, realize the autonomous control of the whole equipment, reduce the number of operators and even realize unmanned, a system is proposed. It is pointed out that the dense medium coal preparation plant should build a set of intelligent optimization production system with the integration of "intelligent perception, intelligent control and intelligent optimization decision". Intelligent perception, the basis of intelligence, is used to realize the perceptual acquisition of coal preparation process data. Intelligent optimization decision analyzes the operation state of the preparation process in the intelligent control module and adjusts the set value of the process index. Intelligent optimization decision analysis intelligent control module is used to sort process operating state, adjust the process indicators set value, so as to achieve dynamic optimization of the process indicators set value. The mutual coordination of perception, control and decision promotes the improvement of the intelligence level and production efficiency of the coal preparation plant. The coordination provides a new idea for realizing intelligent collaborative optimization control of the whole dense medium separation production process in the future.

     

  • loading
  • [1]
    石焕,程宏志,刘万超. 我国选煤技术现状及发展趋势[J]. 煤炭科学技术,2016,44(6):169-174. doi: 10.13199/j.cnki.cst.2016.06.028

    SHI Huan,CHENG Hongzhi,LIU Wanchao. Present status and development trend of China's coal preparation technology[J]. Coal Science and Technology,2016,44(6):169-174. doi: 10.13199/j.cnki.cst.2016.06.028
    [2]
    王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32. doi: 10.13272/j.issn.1671-251x.17465

    WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32. doi: 10.13272/j.issn.1671-251x.17465
    [3]
    匡亚莉. 智能化选煤厂建设的内涵与框架[J]. 选煤技术,2018(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022

    KUANG Yali. The intension and framework for the construction of intelligent coal preparation plant[J]. Coal Preparation Technology,2018(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022
    [4]
    张月飞,王伟,代伟. 重介分选过程产品指标在线预测方法研究[J]. 煤炭工程,2021,53(增刊1):108-111.

    ZHANG Yuefei,WANG Wei,DAI Wei. On-line prediction of product indicators in dense medium coal separation[J]. Coal Engineering,2021,53(S1):108-111.
    [5]
    张凌智,代伟,马小平. 重介质选煤过程先进控制:研究进展及展望[J]. 工矿自动化,2020,46(8):21-27,69. doi: 10.13272/j.issn.1671-251x.2020020001

    ZHANG Lingzhi,DAI Wei,MA Xiaoping. Advanced control of dense medium coal separation process:research progresses and prospects[J]. Industry and Mine Automation,2020,46(8):21-27,69. doi: 10.13272/j.issn.1671-251x.2020020001
    [6]
    曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005

    CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification method and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005
    [7]
    董永胜,陈为高,侯佃平,等. 智能化选煤厂研究与建议[J]. 工矿自动化,2021,47(增刊1):26-31.

    DONG Yongsheng,CHEN Weigao,HOU Dianping,et al. Research and suggestions on intelligent coal preparation plant[J]. Industry and Mine Automation,2021,47(S1):26-31.
    [8]
    RAO B V,KAPUR P C,KONNUR R. Modeling the size-density partition surface of dense-medium separators[J]. International Journal of Mineral Processing,2003,72(1/2/3/4):443-453. doi: 10.1016/S0301-7516(03)00118-2
    [9]
    WANG B,CHU K W,YU A B,et al. Modeling the multiphase flow in a dense medium cyclone[J]. Industrial & Engineering Chemistry Research,2009,48(7):3628-3639.
    [10]
    NARASIMHA M,BRENNAN M S,HOLTHAM P N. A review of flow modeling for dense medium cyclones[J]. Coal Preparation,2006,26(2):55-89. doi: 10.1080/07349340600619733
    [11]
    MEYER E J,CRAIG I K. The development of dynamic models for a dense medium separation circuit in coal beneficiation[J]. Minerals Engineering,2010,23(10):791-805. doi: 10.1016/j.mineng.2010.05.020
    [12]
    ZHANG Lijun,XIA Xiaohua,ZHU Bing. A dual-loop control system for dense medium coal washing processes with sampled and delayed measurements[J]. IEEE Transactions on Control Systems Technology,2017,25(6):2211-2218. doi: 10.1109/TCST.2016.2640946
    [13]
    陈龙,刘全利,王霖青,等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报,2017,43(6):944-954. doi: 10.16383/j.aas.2017.c170136

    CHEN Long,LIU Quanli,WANG Linqing,et al. Data-driven prediction on performance indicators in process industry:a survey[J]. Acta Automatica Sinica,2017,43(6):944-954. doi: 10.16383/j.aas.2017.c170136
    [14]
    李文正,孙伟,郑车晓,等. 应用模糊神经网络对重介质密度进行估算[J]. 矿山机械,2011,39(9):96-99. doi: 10.16816/j.cnki.ksjx.2011.09.027

    LI Wenzheng,SUN Wei,ZHENG Chexiao,et al. Estimation on dense-medium density with fuzzy neural network[J]. Mining & Processing Equipment,2011,39(9):96-99. doi: 10.16816/j.cnki.ksjx.2011.09.027
    [15]
    李停. 基于无模型自适应的重介悬浮液密度控制[D]. 徐州: 中国矿业大学, 2016.

    LI Ting. Density control of dense medium suspension based on the model-free adaptive control[D]. Xuzhou: China University of Mining and Technology, 2016.
    [16]
    DAI Wei,LI Depeng,ZHOU Ping,et al. Stochastic configuration networks with block increments for data modeling in process industries[J]. Information Sciences,2019,484:367-386. doi: 10.1016/j.ins.2019.01.062
    [17]
    DAI Wei,HU Jincheng,CHENG Yuhu,et al. RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes[J]. Journal of Central South University,2019,26(12):3338-3350. doi: 10.1007/s11771-019-4257-6
    [18]
    柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报,2013,39(11):1744-1757. doi: 10.3724/SP.J.1004.2013.01744

    CHAI Tianyou. Operational optimization and feedback control for complex industrial processe[J]. Acta Automatica Sinica,2013,39(11):1744-1757. doi: 10.3724/SP.J.1004.2013.01744
    [19]
    赵春祥,叶桂森. 重介质选煤过程控制模型及控制算法的研究[J]. 煤炭学报,2000,25(增刊1):196-200. doi: 10.13225/j.cnki.jccs.2000.s1.045

    ZHAO Chunxiang,YE Guisen. Study of heavy medium coal preparation process control model and control algorithmn[J]. Journal of China Coal Society,2000,25(S1):196-200. doi: 10.13225/j.cnki.jccs.2000.s1.045
    [20]
    邱佳楷,王然风,付翔. 重介质悬浮液密度宽域智能控制系统设计[J]. 工矿自动化,2019,45(7):33-37. doi: 10.13272/j.issn.1671-251x.17429

    QIU Jiakai,WANG Ranfeng,FU Xiang. Design of intelligent control system for dense medium suspension density with wide domain[J]. Industry and Mine Automation,2019,45(7):33-37. doi: 10.13272/j.issn.1671-251x.17429
    [21]
    曹珍贯. 重介分选煤过程中重介质的密度预测控制研究[D]. 徐州: 中国矿业大学, 2014.

    CAO Zhenguan. Study of prediction control on heavy medium density in the process of coal preparation[D]. Xuzhou: China University of Mining and Technology, 2014.
    [22]
    ZHANG Lijun,XIA Xiaohua. A model predictive control for coal beneficiation dense medium cyclones[J]. IFAC Proceedings Volumes,2014,47(3):9810-9815. doi: 10.3182/20140824-6-ZA-1003.02218
    [23]
    代伟,张凌智,褚菲,等. 重介质选煤过程模型与数据混合驱动的自适应运行反馈控制[J]. 控制理论与应用,2020,37(2):283-294. doi: 10.7641/CTA.2019.80852

    DAI Wei,ZHANG Lingzhi,CHU Fei,et a1. Model-data hybrid driven adaptive operational feedback control of dense medium coal preparation process[J]. Control Theory & Applications,2020,37(2):283-294. doi: 10.7641/CTA.2019.80852
    [24]
    张凌智, 代伟, 陆文捷, 等. 非线性工业过程多速率分层运行优化控制及选煤过程应用研究[C]. 第30届中国过程控制会议, 昆明, 2019: 287.

    ZHANG Lingzhi, DAI Wei, LU Wenjie, et al. Multi-rate layered optimal operational control of nonlinear industrial processes[C]. Proceedings of the 30th Chinese Process Control Conference, Kunming, 2019: 287.
    [25]
    SUN Xiaolu,CAO Zhenguan,YUE Yuanhe,et al. Online prediction of dense medium suspension density based on phase space reconstruction[J]. Particulate Science and Technology,2018,36(8):989-998. doi: 10.1080/02726351.2017.1333180
    [26]
    袁鹏涛. 可变煤质的重介分选过程悬浮液密度设定智能决策与控制研究[D]. 太原: 太原理工大学, 2020.

    YUAN Pengtao. Study on intelligent decision and control of susupension density setting in heavy medium separation process with variable coal quality[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [27]
    胡金良,李彤昀,王光辉. 基于强化学习的重介质选煤过程优化控制[J]. 煤炭工程,2022,54(1):137-141.

    HU Jinliang,LI Tongyun,WANG Guanghui. Optimal control of dense medium coal preparation process based on reinforcement learning[J]. Coal Engineering,2022,54(1):137-141.
    [28]
    陶志达. 选煤厂智能化建设现状调查与分析[J]. 煤炭加工与综合利用,2022(1):66-70. doi: 10.16200/j.cnki.11-2627/td.2022.01.013

    TAO Zhida. Investigation and analysis on the current situation of intelligent construction in coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):66-70. doi: 10.16200/j.cnki.11-2627/td.2022.01.013
    [29]
    桂卫华,岳伟超,谢永芳,等. 铝电解生产智能优化制造研究综述[J]. 自动化学报,2018,44(11):1957-1970. doi: 10.16383/j.aas.2018.c180198

    GUI Weihua,YUE Weichao,XIE Yongfang,et al. A review of intelligent optimal manufacturing for aluminum reduction production[J]. Acta Automatica Sinica,2018,44(11):1957-1970. doi: 10.16383/j.aas.2018.c180198
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (493) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return