Volume 48 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Guomin, ZHANG Ao, HE Yaoyi, et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130, 146.  doi: 10.13272/j.issn.1671-251x.2022060088
Citation: LI Guomin, ZHANG Ao, HE Yaoyi, et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130, 146.  doi: 10.13272/j.issn.1671-251x.2022060088

Research on key technologies of multi-element monitoring data integration in intelligent mine

doi: 10.13272/j.issn.1671-251x.2022060088
  • Received Date: 2022-06-22
  • Rev Recd Date: 2022-08-15
  • Available Online: 2022-08-15
  • Currently, most coal mine monitoring systems adopt private data acquisition protocols, which are incompatible with each other. In order to solve this problem, the key technologies of multi-element monitoring data integration in intelligent mine are discussed from three aspects of data acquisition, data fusion and data storage. Data acquisition: In order to strengthen the openness and compatibility of the system, the private protocol can be encapsulated into a driver dynamic link library (DLL). The data acquisition of each business system can be realized by loading and adapting OPC, MQTT and other protocols and hooking the private protocol driver. The multithreading technology can be adopted to meet the requirements of high efficiency and real-time of multi-channel and multi-protocol data transmission. Data fusion: The data with the high frequency of sharing among various systems can be unified and standardized to form the master data of the coal mine. This will ensure the consistency of data among various systems. Data storage: For data with high real-time requirements, the time series database can be selected. For data with low real-time requirements, the relational database can be selected. Through comparative analysis, InfluxDB is more suitable for real-time storage of coal mine monitoring data, and MySQL Community is more suitable for data storage with low real-time requirements. Redis cache technology can be used to achieve efficient data cache so as to ensure the integrity of coal mine monitoring data.

     

  • loading
  • [1]
    崔亚仲,白明亮,李波. 智能矿山大数据关键技术与发展研究[J]. 煤炭科学技术,2019,47(3):66-74. doi: 10.13199/j.cnki.cst.2019.03.009

    CUI Yazhong,BAI Mingliang,LI Bo. Key technology and development research on big data of intelligent mine[J]. Coal Science and Technology,2019,47(3):66-74. doi: 10.13199/j.cnki.cst.2019.03.009
    [2]
    毛善君,刘孝孔,雷小锋,等. 智能矿井安全生产大数据集成分析平台及其应用[J]. 煤炭科学技术,2018,46(12):169-176. doi: 10.13199/j.cnki.cst.2018.12.027

    MAO Shanjun,LIU Xiaokong,LEI Xiaofeng,et al. Research and application on big data integration analysis platform for intelligent mine safety production[J]. Coal Science and Technology,2018,46(12):169-176. doi: 10.13199/j.cnki.cst.2018.12.027
    [3]
    贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17-24. doi: 10.13272/j.issn.1671-251x.17798

    HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Industry and Mine Automation,2021,47(6):17-24. doi: 10.13272/j.issn.1671-251x.17798
    [4]
    荣雪,黄友锐,储怡然,等. 基于OPC UA的煤矿安全生产监控系统信息模型[J]. 工矿自动化,2022,48(3):112-117.

    RONG Xue,HUANG Yourui,CHU Yiran,et al. Information model of coal mine safety production monitoring system based on OPC UA[J]. Journal of Mine Automation,2022,48(3):112-117.
    [5]
    旷永龙. Modbus通信在煤矿监测系统中的应用[J]. 矿业装备,2019(2):110-111. doi: 10.3969/j.issn.2095-1418.2019.02.047

    KUANG Yonglong. Application of Modbus communication in coal mine monitoring system[J]. Mining Equipment,2019(2):110-111. doi: 10.3969/j.issn.2095-1418.2019.02.047
    [6]
    王海军,丁剑明,白明亮,等. 神东煤炭生产数据标准化规划初探[J]. 中国煤炭,2018,44(2):83-86,90. doi: 10.3969/j.issn.1006-530X.2018.02.017

    WANG Haijun,DING Jianming,BAI Mingliang,et al. Preliminary study on coal production data standardization and planning of Shendong Group[J]. China Coal,2018,44(2):83-86,90. doi: 10.3969/j.issn.1006-530X.2018.02.017
    [7]
    贺耀宜,王海波. 基于物联网的可融合性煤矿监控系统研究[J]. 工矿自动化,2019,45(8):13-18. doi: 10.13272/j.issn.1671-251x.17458

    HE Yaoyi,WANG Haibo. Research on coal mine fusion monitoring system based on Internet of things[J]. Industry and Mine Automation,2019,45(8):13-18. doi: 10.13272/j.issn.1671-251x.17458
    [8]
    左文康. 基于多线程技术的水泥企业生产数据采集系统[D]. 济南: 济南大学, 2017.

    ZUO Wenkang. Production data acquisition system of cement enterprises based on multithreading technology[D]. Jinan: University of Jinan, 2017.
    [9]
    荣宝,魏德志,于海成,等. 露天煤矿安全生产大数据存储与流式计算技术[J]. 工矿自动化,2021,47(增刊1):101-102,109.

    RONG Bao,WEI Dezhi,YU Haicheng,et al. Open-pit coal mine safety production big data storage and streaming computing technology[J]. Industry and Mine Automation,2021,47(S1):101-102,109.
    [10]
    董雪,高远,敖炳. 基于TDengine的智能电网监控系统数据存储方法研究[J]. 电气应用,2021,40(8):68-74.

    DONG Xue,GAO Yuan,AO Bing. Research on data storage method of smart grid monitoring system based on TDengine[J]. Electrotechnical Application,2021,40(8):68-74.
    [11]
    高翔. 基于Clickhouse的大数据对比分析应用案例[J]. 电子技术,2022,51(5):31-35.

    GAO Xiang. Case stduy on comparative analysis of big data based on Clickhouse[J]. Electronic Technology,2022,51(5):31-35.
    [12]
    张世贤,张少春,谢晓东. 基于InfluxDB的监控设备通用运维管理平台[J]. 计算机系统应用,2021,30(12):123-127. doi: 10.15888/j.cnki.csa.008201

    ZHANG Shixian,ZHANG Shaochun,XIE Xiaodong. General operation and maintenance management platform for monitoring equipment based on InfluxDB[J]. Computer Systems & Applications,2021,30(12):123-127. doi: 10.15888/j.cnki.csa.008201
    [13]
    王续法. 基于Redis的一致性分析与改进[D]. 成都: 电子科技大学, 2017.

    WANG Xufa. Analysis and improvement of data consistency based on Redis[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (280) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return