Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG Qingguo, ZHOU Liang, QIN Ruxiang, et al. Study on spontaneous combustion characteristics of coking coal with different pre-oxidation degrees after CO2 cooling[J]. Journal of Mine Automation,2023,49(2):109-114, 156.  doi: 10.13272/j.issn.1671-251x.2022060020
Citation: WANG Qingguo, ZHOU Liang, QIN Ruxiang, et al. Study on spontaneous combustion characteristics of coking coal with different pre-oxidation degrees after CO2 cooling[J]. Journal of Mine Automation,2023,49(2):109-114, 156.  doi: 10.13272/j.issn.1671-251x.2022060020

Study on spontaneous combustion characteristics of coking coal with different pre-oxidation degrees after CO2 cooling

doi: 10.13272/j.issn.1671-251x.2022060020
  • Received Date: 2022-06-08
  • Rev Recd Date: 2022-11-10
  • Available Online: 2022-09-19
  • In view of the problem of coal spontaneous combustion and re-ignition by reducing the oxidation of coal with inert gas, most of the existing studies are related to the coal low-temperature oxidation process and the coal re-ignition process. The spontaneous combustion characteristics of coal secondary oxidation after reducing inert gas temperature are less covered. In order to solve the above problems, taking coking coal as an example, the spontaneous combustion characteristics of coking coal oxidized at different temperatures after CO2 cooling and secondary oxidation are explored through the low-temperature oxidation experiment. The coking coal is pre-oxidized by GC-4000A temperature-programmed equipment at 70, 110, 150 ℃ respectively. The oxygen consumption rate, CO production rate, CO2 concentration and apparent activation energy of coking coal during the secondary oxidation process are analyzed after cooling to 30 ℃ with CO2 gas and dry air respectively. The experimental results show that at the same pre-oxidation temperature, compared with the dry air cooling, the change rule of related parameters of coking coal cooled by CO2 is basically the same. In the early stage of secondary oxidation, because of coking coal absorbs a lot of CO2, CO2 hinders the contact between coal and O2, the oxygen consumption rate and CO production rate decrease. The apparent activation energy increases, and the oxidation of coking coal decreases. As the CO2 resolves, CO2 cooling also affects the later reaction of pre-oxidized coking coal, which reduces the spontaneous combustion risk of pre-oxidized coking coal during the whole reaction process. When the pre-oxidation temperature is different, the pre-oxidation coking coal at 70 ℃ and 110 ℃ has a small amount of CO2 adsorption in the early stage. This leads to no change in oxygen consumption rate, CO production rate and apparent activation energy. When the pre-oxidized coking coal at 150 ℃ is cooled to 30 ℃, the coking coal has more CO2 adsorption, resulting lower the oxygen consumption rate and CO production rate. With the increase of activation energy, more energy is required. The coal oxygen reaction is more difficult. The risk of spontaneous combustion is also reduced. Therefore, when there is a danger of oxidation and spontaneous combustion of coal in the coal mine, it is necessary to inject CO2 for a long time to reduce the possibility of secondary oxidation and re-ignition when the mining area is reopened.

     

  • loading
  • [1]
    屈世甲,安世岗,武福生,等. 大采高综采工作面采空区自燃“三带”研究[J]. 工矿自动化,2019,45(5):22-25. doi: 10.13272/j.issn.1671-251x.17403

    QU Shijia,AN Shigang,WU Fusheng,et al. Research on spontaneous combustion "three zones" in goaf of fully mechanized working face with large mining height[J]. Industry and Mine Automation,2019,45(5):22-25. doi: 10.13272/j.issn.1671-251x.17403
    [2]
    王洋,董小明,吴建宾,等. 工作面沿空侧采空区煤自燃危险区域研究[J]. 煤矿安全,2022,53(3):193-199. doi: 10.13347/j.cnki.mkaq.2022.03.029

    WANG Yang,DONG Xiaoming,WU Jianbin,et al. Study on hazard zone of coal spontaneous combustion in adjacent goaf along working face[J]. Safety in Coal Mines,2022,53(3):193-199. doi: 10.13347/j.cnki.mkaq.2022.03.029
    [3]
    文虎,姜华,翟小伟,等. 煤二次氧化气体特征实验研究[J]. 煤矿安全,2013,44(9):38-40. doi: 10.13347/j.cnki.mkaq.2013.09.017

    WEN Hu,JIANG Hua,ZHAI Xiaowei,et al. Experiment study on gas characteristics of coal secondary oxidation[J]. Safety in Coal Mines,2013,44(9):38-40. doi: 10.13347/j.cnki.mkaq.2013.09.017
    [4]
    邓军,赵婧昱,张嬿妮,等. 低变质程度煤二次氧化自燃特性试验[J]. 煤炭科学技术,2016,44(3):49-54. doi: 10.13199/j.cnki.cst.2016.03.010

    DENG Jun,ZHAO Jingyu,ZHANG Yanni,et al. Experiment on secondary oxidation spontaneous combustion characteristics of low metamorphic degree coal[J]. Coal Science and Technology,2016,44(3):49-54. doi: 10.13199/j.cnki.cst.2016.03.010
    [5]
    邓军,李青蔚,肖旸,等. 原煤和氧化煤的低温氧化特性[J]. 西安科技大学学报,2018,38(1):49-54. doi: 10.13800/j.cnki.xakjdxxb.2018.0101

    DENG Jun,LI Qingwei,XIAO Yang,et al. Characteristics of low-temperature oxidation of raw and oxidized coals[J]. Journal of Xi'an University of Science and Technology,2018,38(1):49-54. doi: 10.13800/j.cnki.xakjdxxb.2018.0101
    [6]
    邓军,赵婧昱,张嬿妮,等. 陕西侏罗纪煤二次氧化自燃特性试验研究[J]. 中国安全科学学报,2014,24(1):34-40. doi: 10.16265/j.cnki.issn1003-3033.2014.01.011

    DENG Jun,ZHAO Jingyu,ZHANG Yanni,et al. Experimental study on spontaneous combustion characteristics of secondary oxidation of Jurassic coal[J]. China Safety Science Journal,2014,24(1):34-40. doi: 10.16265/j.cnki.issn1003-3033.2014.01.011
    [7]
    张辛亥,李青蔚. 预氧化煤自燃特性试验研究[J]. 煤炭科学技术,2014,42(11):37-40. doi: 10.13199/j.cnki.cst.2014.11.011

    ZHANG Xinhai,LI Qingwei. Experiment study on spontaneous combustion characteristics of pre-oxidized coal[J]. Coal Science and Technology,2014,42(11):37-40. doi: 10.13199/j.cnki.cst.2014.11.011
    [8]
    秦跃平,宋怀涛,许士民. 重复升温对煤低温氧化特性影响的试验研究[J]. 煤矿安全,2014,45(5):9-12. doi: 10.13347/j.cnki.mkaq.2014.05.003

    QIN Yueping,SONG Huaitao,XU Shimin. Experimental study on impact of repeated heating on coal low temperature oxidation characteristics[J]. Safety in Coal Mines,2014,45(5):9-12. doi: 10.13347/j.cnki.mkaq.2014.05.003
    [9]
    刘少南. CO2浓度对煤低温氧化影响的试验研究[J]. 煤炭科学技术,2014,42(增刊1):149-151.

    LIU Shaonan. Experimental study on CO2 concentration affected to low temperature coal oxidation[J]. Coal Science and Technology,2014,42(S1):149-151.
    [10]
    娄和壮,贾廷贵. 惰性气氛对煤自燃过程的竞争吸附差异性研究[J]. 中国安全科学学报,2020,30(4):60-67. doi: 10.16265/j.cnki.issn1003-3033.2020.04.010

    LOU Hezhuang,JIA Tinggui. Competitive adsorption difference during coal spontaneous combustion process in noble gas atmosphere[J]. China Safety Science Journal,2020,30(4):60-67. doi: 10.16265/j.cnki.issn1003-3033.2020.04.010
    [11]
    ZHOU Buzhuang, YANG Shengqiang, YANG Wenming, et al. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2[J]. Fuel, 2022, 307(1). DOI: 10.1016/ j.fuel. 2021.121893.
    [12]
    苏楚涵. 红庆梁矿投产初期过断层采空区煤自燃危险性预判研究[D]. 阜新: 辽宁工程技术大学, 2019.

    SU Chuhan. Study on the prediction of the risk of spontaneous combustion of coal in the fault goaf area at the early stage of production of Hongqingliang Mine[D]. Fuxin: Liaoning Technical University, 2019.
    [13]
    郭志国,王蓉,张俊,等. CO2防控氧化煤复燃效率的试验研究[J]. 矿业科学学报,2021,6(2):160-165.

    GUO Zhiguo,WANG Rong,ZHANG Jun,et al. Experimental research on the fire-fighting effects of CO2 on the recrudescence process of oxidized coal[J]. Journal of Mining Science and Technology,2021,6(2):160-165.
    [14]
    ZHANG Yi,XU Jun,WANG Deming. Experimental study on the inhibition effects of nitrogen and carbon dioxide on coal spontaneous combustion[J]. Energies,2020,13(20):1-14.
    [15]
    马砺,邓军,王伟峰,等. CO2对煤低温氧化反应过程的影响实验研究[J]. 西安科技大学学报,2014,34(4):379-383.

    MA Li,DENG Jun,WANG Weifeng,et al. Experimental study of effect of CO2 on low temperature oxidation reaction process for coal[J]. Journal of Xi'an University of Science and Technology,2014,34(4):379-383.
    [16]
    邵昊,蒋曙光,吴征艳,等. 二氧化碳和氮气对煤自燃性能影响的对比试验研究[J]. 煤炭学报,2014,39(11):2244-2249. doi: 10.13225/j.cnki.jccs.2013.1471

    SHAO Hao,JIANG Shuguang,WU Zhengyan,et al. Comparative research on the influence of dioxide carbon and nitrogen on performance of coal spontaneous combustion[J]. Journal of China Coal Society,2014,39(11):2244-2249. doi: 10.13225/j.cnki.jccs.2013.1471
    [17]
    方熙杨,姚海飞. 惰气驱替不同粒径煤体中氧气的实验研究[J]. 工矿自动化,2021,47(9):101-107. doi: 10.13272/j.issn.1671-251x.17840

    FANG Xiyang,YAO Haifei. Experimental study on inert gas displacement of oxygen from coal with different particle size[J]. Industry and Mine Automation,2021,47(9):101-107. doi: 10.13272/j.issn.1671-251x.17840
    [18]
    徐精彩,文虎,葛岭梅,等. 松散煤体低温氧化放热强度的测定和计算[J]. 煤炭学报,2000,25(4):387-390. doi: 10.3321/j.issn:0253-9993.2000.04.012

    XU Jingcai,WEN Hu,GE Lingmei,et al. Determination and calculation of oxidation heat liberation intensity of loose coal at low temperature stage[J]. Journal of China Coal Society,2000,25(4):387-390. doi: 10.3321/j.issn:0253-9993.2000.04.012
    [19]
    吴兵,郭志国,陈娟,等. N2和CO2对煤燃烧全过程灭火效能的对比研究[J]. 中国矿业大学学报,2018,47(2):247-256.

    WU Bing,GUO Zhiguo,CHEN Juan,et al. Comparative research on the fire-extinguishing effects of N2 & CO2 on the whole process of coal combustion[J]. Journal of China University of Mining & Technology,2018,47(2):247-256.
    [20]
    尹晓丹,王德明,仲晓星. 基于耗氧量的煤低温氧化反应活化能研究[J]. 煤矿安全,2010,41(7):12-15.

    YIN Xiaodan,WANG Deming,ZHONG Xiaoxing. The research on activation energy of coal oxidation at low temperature based on oxygen consumption[J]. Safety in Coal Mines,2010,41(7):12-15.
    [21]
    仲晓星,王德明,尹晓丹. 基于程序升温的煤自燃临界温度测试方法[J]. 煤炭学报,2010,35(增刊1):128-131. doi: 10.13225/j.cnki.jccs.2010.s1.036

    ZHONG Xiaoxing,WANG Deming,YIN Xiaodan. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment[J]. Journal of China Coal Society,2010,35(S1):128-131. doi: 10.13225/j.cnki.jccs.2010.s1.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (165) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return